当前位置:主页 > 科技论文 > 软件论文 >

目标提取与哈希机制的多标签图像检索

发布时间:2019-03-15 15:34
【摘要】:目的哈希是大规模图像检索的有效方法。为提高检索精度,哈希码应保留语义信息。图像之间越相似,其哈希码也应越接近。现有方法首先提取描述图像整体的特征,然后生成哈希码。这种方法不能精确地描述图像包含的多个目标,限制了多标签图像检索的精度。为此提出一种基于卷积神经网络和目标提取的哈希生成方法。方法首先提取图像中可能包含目标的一系列区域,然后用深度卷积神经网络提取每个区域的特征并进行融合,通过生成一组特征来刻画图像中的每个目标,最后再产生整幅图像的哈希码。采用Triplet Loss的训练方法,使得哈希码尽可能保留语义信息。结果在VOC2012、Flickr25K和NUSWIDE数据集上进行多标签图像检索。在NDCG(normalized discounted cumulative gain)性能指标上,当返回图像数量为1 000时,对于VOC2012,本文方法相对于DSRH(deep semantic ranking hashing)方法提高2 4个百分点,相对于ITQ-CCA(iterative quantization-canonical correlation analysis)方法能提高3 6个百分点;对于Flickr25,本文方法比DSRH方法能提高2个左右的百分点;对于NUSWIDE,本文方法相对于DSRH方法能提高4个左右的百分点。对于平均检索准确度,本文方法在NUSWIDE和Flickr25上能提高2 5个百分点。根据多项评价指标可以看出,本文方法能以更细粒度来精确地描述图像,显著提高了多标签图像检索的性能。结论本文新的特征学习模型,对图像进行细粒度特征编码是一种可行的方法,能够有效提高数据集的检索性能。
[Abstract]:Objective Hash is an effective method for large-scale image retrieval. In order to improve the retrieval accuracy, hash codes should retain semantic information. The more similar the images, the closer the hash code should be. The existing methods first extract the features describing the whole image, and then generate hash codes. This method can not accurately describe the multiple objects contained in the image, which limits the accuracy of multi-label image retrieval. A hash generation method based on convolution neural network and target extraction is proposed. Methods A series of regions that may contain objects in the image are extracted firstly, then the features of each region are extracted and fused by using the depth convolution neural network, and a set of features is generated to depict each target in the image. Finally, the hash code of the whole image is generated. The training method of Triplet Loss is used to make the hash code retain semantic information as much as possible. Results Multi-label image retrieval was performed on VOC2012,Flickr25K and NUSWIDE datasets. In terms of the NDCG (normalized discounted cumulative gain) performance index, when the number of returned images is 1,000, the proposed method for VOC2012, is 24 percentage points higher than the DSRH (deep semantic ranking hashing) method. Compared with ITQ-CCA (iterative quantization-canonical correlation analysis) method), it could be increased by 36 percentage points. For Flickr25, this method can increase about two percentage points compared with DSRH method, and for NUSWIDE, this method can increase about 4 percentage points compared with DSRH method. For the average retrieval accuracy, this method can improve 25 percentage points on NUSWIDE and Flickr25. According to several evaluation indexes, it can be seen that the proposed method can accurately describe the image with finer granularity, and significantly improve the performance of multi-label image retrieval. Conclusion the new feature learning model in this paper shows that fine-grained feature coding is a feasible method to improve the retrieval performance of data sets.
【作者单位】: 国防科学技术大学并行与分布处理重点实验室;
【基金】:国家自然科学基金项目(U1435219)~~
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 韩法旺;;基于云计算模式的图像检索研究[J];情报科学;2011年10期

2 何岩;;以计算机为基础的色彩图像检索方法与研究[J];计算机光盘软件与应用;2013年12期

3 郭海凤;李广水;仇彬任;;基于融合多特征的社会网上图像检索方法[J];计算机与现代化;2013年12期

4 柏正尧,周纪勤;基于复数矩不变性的图像检索方法研究[J];计算机应用;2000年10期

5 夏峰,张文龙;一种图像检索的新方法[J];计算机应用研究;2002年11期

6 邓诚强,冯刚;基于内容的多特征综合图像检索[J];计算机应用;2003年07期

7 斯白露,高文,卢汉清,曾炜,段立娟;基于感兴趣区域的图像检索方法[J];高技术通讯;2003年05期

8 刘怡,于沛;基于“知网”的新闻图像检索方法[J];河南师范大学学报(自然科学版);2003年02期

9 张荣,郑浩然,李金龙,王煦法;进化加速技术在图像检索中的应用[J];计算机工程与应用;2004年16期

10 黄德才,胡嘉,郑月锋;交互式图像检索中相关反馈进展研究[J];计算机应用研究;2005年09期

相关会议论文 前10条

1 陈旭文;朱红丽;;一种高效的图像检索方法[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年

2 周向东;张亮;张琪;刘莉;殷慷;施伯乐;;一种新的图像检索相关反馈方法[A];第十九届全国数据库学术会议论文集(研究报告篇)[C];2002年

3 陈世亮;李战怀;闫剑锋;;一种基于本体描述的空间语义图像检索方法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年

4 赵海英;彭宏;;基于最优近似反馈的图像检索[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年

5 许相莉;张利彪;于哲舟;周春光;;基于商空间粒度计算的图像检索[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年

6 李凌伟;周荣贵;刘怡;;基于概念的图像检索方法[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年

7 杨关良;李忠杰;徐小杰;;基于代表色的图像检索方法研究[A];首届信息获取与处理学术会议论文集[C];2003年

8 彭瑜;乔奇峰;魏昆娟;;基于多示例学习的图像检索方法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年

9 胡敬;武港山;;基于语义特征的风景图像检索[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年

10 许天兵;;一种基于语义分类的图像检索方法[A];中国图象图形学会第十届全国图像图形学术会议(CIG’2001)和第一届全国虚拟现实技术研讨会(CVR’2001)论文集[C];2001年

相关博士学位论文 前10条

1 崔超然;图像检索中自动标注、标签处理和重排序问题的研究[D];山东大学;2015年

2 杨迪;基于内容的分布式图像检索[D];北京邮电大学;2015年

3 张旭;网络图像检索关键技术研究[D];西安电子科技大学;2014年

4 吴梦麟;基于半监督学习的医学图像检索研究[D];南京理工大学;2015年

5 高毫林;基于哈希技术的图像检索研究[D];解放军信息工程大学;2014年

6 李清亮;图像检索中判别性增强研究[D];吉林大学;2016年

7 刘爽;多特征融合图像检索方法及其应用研究[D];哈尔滨理工大学;2016年

8 程航;密文JPEG图像检索研究[D];上海大学;2016年

9 李展;基于多示例学习的图像检索与推荐相关算法研究[D];西北大学;2012年

10 郭丽;基于内容的商标图像检索研究[D];南京理工大学;2003年

相关硕士学位论文 前10条

1 赵鸿;基于尺度不变局部特征的图像检索研究[D];华南理工大学;2015年

2 孙剑飞;基于图像索引的热点话题检索方法研究[D];兰州大学;2015年

3 章进洲;图像检索中的用户意图分析[D];南京理工大学;2015年

4 苗思杨;移动图像检索中的渐进式传输方式研究[D];大连海事大学;2015年

5 都业刚;基于显著性的移动图像检索[D];大连海事大学;2015年

6 王梦蕾;基于用户反馈和改进词袋模型的图像检索[D];南京理工大学;2015年

7 许鹏飞;基于草图的海量图像检索方法研究[D];浙江大学;2015年

8 冯进丽;基于BoF的图像检索与行为识别研究[D];山西大学;2015年

9 乔维强;基于低级特征和语义特征的医学图像检索[D];北京理工大学;2015年

10 蒋国宝;基于内容的概念建模和图像检索重排序[D];复旦大学;2014年



本文编号:2440755

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2440755.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户db76d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com