基于Wifi信号的手势识别技术研究
[Abstract]:As a kind of radio wave operating in 2.4GHz and 5.8GHz band, WiFi signal has the characteristics of small wavelength, high frequency and sufficient bandwidth, so it is suitable for a large number of data transmission, so it is widely used in the field of short-range wireless communication. With the development of pattern recognition and human-computer interaction technology, the powerful ability of WiFi signal in target detection and recognition is gradually excavated. Now, researchers have been able to identify the location of the target, the posture of the human body, and even the gesture with the help of the WiFi signal. The recognition technology based on the WiFi signal has become a hot research topic. Based on the above background, this paper discusses the key technology of using WiFi signal to realize gesture recognition, constructs a preliminary gesture recognition model, and processes the signal involved in it. The algorithms of feature extraction and classification recognition are deeply analyzed. When a WiFi signal encounters a dynamic gesture in the process of propagation, its transmission characteristics, such as amplitude, phase and power, will be affected to a certain extent, which is determined by the movement characteristics of the gesture. This means that the WiFi signal passing through the gesture is modulated by the gesture in a certain sense, which contains the information of the movement characteristic of the gesture. So long as the information is demodulated in a reasonable way, the motion recognition can be realized. Generally speaking, the perfect gesture recognition process first needs to establish the gesture model which is suitable for feature extraction through data acquisition and data pre-processing. Secondly, the special feature extraction algorithm is used to extract the gesture feature to obtain the corresponding feature vector, and then, the recognition algorithm model which can classify the feature vector effectively is constructed. Finally, in order to verify the effectiveness of the recognition method, it is often necessary to divide the feature vectors into training set and test set, and the training set is used as the input of the classification recognition algorithm to train the recognition model. The test sets input the trained recognition model to obtain the recognition rate and verify the effectiveness of the recognition algorithm. In this paper, the acquisition of WiFi signal data is accomplished by SORA software radio platform. In this paper, the long leading part of 802.11 data frame is retained as the original data, and the power envelope of WiFi signal is obtained by data preprocessing. The periodic segmentation of the envelope is carried out and the obtained periodic segment is used as the gesture model. In order to reduce the dimension of the information contained in the original sample and reduce the interference of irrelevant noise, the discrete wavelet transform (DTW) is used to extract the features of the original sample. The feature data is greatly compressed; In the stage of classification and recognition, support vector machine (SVM) is chosen as the main algorithm to establish the classification and recognition model. Meanwhile, the kernel function of SVM is modified by dynamic time warping (DTW) algorithm. In order to ensure that support vector machine can be applied to variable length feature vector classification. The simulation and test results show that the proposed method model of gesture recognition based on WiFi signal can effectively recognize 9 pre-defined dynamic gestures with an average recognition rate of 94.8% under a small number of samples. It has certain research value and practicability, and provides a new way to solve the related problems.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;TN92
【参考文献】
相关期刊论文 前10条
1 徐伟业;;一种快速离散小波变换算法及其在语音信号中的应用[J];计算机工程与应用;2011年35期
2 黄国范;程小平;;基于历史的动态手势识别[J];西南大学学报(自然科学版);2009年01期
3 耿冠宏;孙伟;罗培;;神经网络模式识别[J];软件导刊;2008年10期
4 朱树先;张仁杰;;支持向量机核函数选择的研究[J];科学技术与工程;2008年16期
5 苟博;黄贤武;;支持向量机多类分类方法[J];数据采集与处理;2006年03期
6 何建新,刘真祥;SVM与DTW结合实现语音分类识别[J];贵州大学学报(自然科学版);2002年04期
7 李清水,方志刚,沈模卫,陈育伟;手势识别技术及其在人机交互中的应用[J];人类工效学;2002年01期
8 吴江琴,高文;基于DGMM的中国手语识别系统[J];计算机研究与发展;2000年05期
9 张学工;关于统计学习理论与支持向量机[J];自动化学报;2000年01期
10 梁甸农,周智敏;叶簇穿透超宽带成像雷达技术[J];国防科技参考;1999年03期
相关博士学位论文 前2条
1 翟世俊;基于UWB信号的目标识别关键技术研究[D];北京邮电大学;2014年
2 李玉峰;小波分析在图像去噪与压缩中的应用研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2006年
相关硕士学位论文 前9条
1 庞琳;基于Sora平台的低功耗WiFi系统的设计与实现[D];郑州大学;2014年
2 严志航;基于小波变换和动态时间规整的计步器算法设计[D];南京理工大学;2014年
3 王根平;基于小波变换的信号分析及处理[D];西安电子科技大学;2013年
4 黄刚林;基于SORA软件无线电平台DTMB接收技术的实现[D];武汉理工大学;2013年
5 常亚南;基于HMM的动态手势识别[D];华南理工大学;2012年
6 李剑飞;基于视觉的实时手势跟踪与识别研究[D];北方工业大学;2011年
7 张郝;基于小波变换的图像去噪方法研究[D];北京交通大学;2008年
8 王茂吉;基于视觉的静态手势识别系统[D];哈尔滨工业大学;2006年
9 高宁;陀螺漂移信号的小波去噪及其误差模型的研究[D];天津大学;2004年
,本文编号:2449074
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2449074.html