多视图三维重建中图像配准和光束法平差过程的并行算法研究
[Abstract]:In recent years, with the development and maturity of computer vision, multi-view 3D reconstruction has been widely used in many fields such as digital city, medical imaging, virtual reality and so on because of its low cost and convenient operation. Image feature extraction, feature matching and beam adjustment are the key steps in multi-view 3D reconstruction, but there are also some problems. First of all, the SIFT algorithm usually used in the feature extraction phase is not suitable for all scenes. Secondly, with the huge advantages of GPU in computing power and memory bandwidth, the multi-view 3D reconstruction algorithm based on GPU has become a hot research topic. However, the migration of feature matching algorithm to GPU platform is less, and because of the different hardware architecture, the reliability of parallel algorithm and the limited display memory greatly restrict the parallel algorithm of beam adjustment. The main contents of this paper are as follows: (1) A parallel image registration algorithm based on Harris-Laplace feature and SIFT description is proposed in this paper. In the feature extraction phase, the improved Harris-Laplace algorithm is used to extract the feature points which are invariant to the brightness, rotation and scale of the image, and then the feature points are described by the SIFT descriptor. In the stage of feature point matching, two-way matching method and polar geometric constraint are used for coarse matching and fine matching of feature points. On the basis of analyzing the parallelism of the algorithm, the CPU_GPU cooperative processing technology is used to divide the tasks reasonably on the CPU and GPU sides, considering the nature of the task and the transmission time. The efficiency of the whole algorithm is improved. (2) LM is often used to linearize the BA problem and PCG algorithm is used to solve the equation. In this paper, we first decompose the PCG algorithm into a simple Yakubi matrix and a vector multiplication problem by taking advantage of the characteristic of the coefficient matrix of the equation without the need of explicit memory method. Then a filtering step is added to the pre-processing process of the BA parallel algorithm, which eliminates the error points caused by the numerical conversion and maximizes the single-precision floating-point operation capability of the GPU with high peak value under the condition of ensuring the accuracy. Finally, on the basis of deeply analyzing the relationship between Yakubi transposable matrix and original matrix, a parallel algorithm of beam adjustment is proposed. The parallel design of the operation involving Yakubi transposable matrix can solve the adjustment problem of beam method without storing Yakubi transposable matrix. From the analysis of the experimental results, this paper proposes a parallel image registration algorithm based on Harris-Laplace feature and SIFT description, which improves the overall efficiency of the algorithm and ensures the accuracy of the algorithm. In this paper, a parallel algorithm for beam adjustment is proposed, which not only achieves better acceleration effect, but also greatly reduces the memory space occupied by the algorithm. With the powerful parallel computing ability of GPU, the real-time performance of multi-view 3D reconstruction is satisfied.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 桂生;刘洪;李飞;;简化的混合域全波形反演方法及GPU加速[J];石油物探;2017年01期
2 陈洁;高志强;密保秀;陈会;;引入极线约束的SURF特征匹配算法[J];中国图象图形学报;2016年08期
3 安婷;贺一民;张志毅;;改进的双向SIFT特征匹配算法[J];计算机工程与科学;2016年01期
4 姜超;耿则勋;娄博;魏小峰;沈忱;;基于GPU的SIFT特征匹配算法并行处理研究[J];计算机科学;2013年12期
5 刘鑫;许华荣;;基于GPU的特征点提取与匹配算法比较[J];计算机辅助设计与图形学学报;2013年10期
6 聂俊岚;陈欢欢;唐勇;张继凯;;改进的GPU-SIFT特征提取与匹配算法[J];燕山大学学报;2013年02期
7 王蓓蕾;朱志良;孟t-;;基于CUDA加速的SIFT特征提取[J];东北大学学报(自然科学版);2013年02期
8 徐秋辉;佘江峰;宋晓群;肖鹏峰;;利用Harris-Laplace和SIFT描述子进行低空遥感影像匹配[J];武汉大学学报(信息科学版);2012年12期
9 张德好;刘青昆;宫利东;;GPU加速分子动力学模拟中的电荷分布计算[J];计算机应用与软件;2012年10期
10 肖汉;周清雷;张祖勋;;基于多GPU的Harris角点检测并行算法[J];武汉大学学报(信息科学版);2012年07期
相关博士学位论文 前6条
1 肖汉;基于CPU+GPU的影像匹配高效能异构并行计算研究[D];武汉大学;2011年
2 田文;多视图图像的快速三维场景重建[D];华中科技大学;2010年
3 朱清波;序列图像三维重建方法研究[D];华中科技大学;2010年
4 徐帆;无组织多视图图像的自动化三维场景重建[D];华中科技大学;2007年
5 方磊;基于特征的图像序列三维场景重建技术研究[D];华中科技大学;2007年
6 陈付幸;基于非定标图像序列的三维重建关键技术研究[D];国防科学技术大学;2005年
相关硕士学位论文 前3条
1 孟云;GPU加速的流体布料碰撞过程仿真[D];杭州电子科技大学;2015年
2 陈鹏;基于GPU的图像特征提取加速算法[D];复旦大学;2013年
3 陈志雄;基于图像配准的SIFT算法研究与实现[D];武汉理工大学;2008年
,本文编号:2458898
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2458898.html