集值数据和社交网络联合发布中隐私保护方法研究
[Abstract]:With the rapid development and widespread use of the network, various applications have generated massive data, such as WeChat, facebook, shopping platform and so on. There is an immeasurable social and economic value between the data, such as group behavior analysis, auxiliary business decision and so on. When data is published to a data miner, the data needs to be protected by the privacy, since the data generally contains the privacy information of many users, which can easily lead to the disclosure of the privacy information, so the data privacy protection is particularly important. In recent years, data privacy protection is a popular research field, and there are many relevant research results, but the existing research is mainly for the privacy protection of single-type data. In the age of large data, data mining has been widely used, such as social network data and transactional data mining, to solve the cold start problem of the shopping recommendation system, and so on. In the case of multi-source data, the increase of the background knowledge brings new privacy problems, and the existing privacy protection method is not applicable to the joint release of multi-source data. Relative relation type data, set-valued data has the features of high dimension, sparse and so on. The privacy protection method of relational data is obviously not applicable to set-valued data, such as using the k-anonymity privacy model to protect the set-valued data, which can cause the data loss to be too large. In view of this situation, the time-uncertainty model can balance the privacy protection and information loss well, and in recent years there are many research results on the privacy protection of set-valued data based on the uncertainty. There are also many data protection models in social networking data, such as the k-degree anonymous, l-diversity, and so on, and these models meet the privacy requirements by adding or deleting edges or nodes. The protection model can protect the single-type data, but in the case of the joint release of the social network data and the set-valued data, the background knowledge is increased, so that the leakage probability of the victim information is greater than the threshold value, and the data privacy requirement is not met. Therefore, for the joint release of social network data and set-valued data, this paper proposes a packet-level-uncertainty privacy protection model. The main work is as follows: First, the existing privacy protection model of set-valued data and social network data is analyzed, and the attack model of data joint release is put forward. The existing single data type privacy protection model is not applicable to the attack model. In the case of the background knowledge of any data item in the set-valued data, the constraint-uncertainty model ensures that the probability of the sensitive data item is not more than the threshold value. The model is effective when the set-valued data is distributed separately, but in the case of a joint release with the social network, if the attacker also knows that the victim has several friends in the social application, that is, the degree of the social network data victim node, Then it is concluded that the probability of the victim in the set-valued data sensitive term is greater than the threshold value and the privacy requirement is not met. Secondly, based on the above attack model, combined with the model of the uncertainty model and the degree of anonymity, this paper puts forward the packet-uncertainty privacy protection model. First, the protection model requires a generalization tree, such as apple, bana, to be generalized to fruit based on the project properties. And then grouping the set-valued data according to the generalization tree, that is, the records of the non-sensitive items in the set-valued data have the same parent node in the generalization tree are divided into a group. Based on the uncertainty model, the model requires that each group meet the constraint-uncertainty model, and it is proved that each group meets the constraint-uncertainty model, and the whole data also satisfies the constraint-uncertainty model. And finally, grouping the nodes of the social network (consistent with the grouping of the set-valued data) and the anonymous processing in the group, so that the nodes of the social network have the same degree in the group. Therefore, under the background knowledge above, the probability of the sensitive term of the attack victim is lower than the threshold value, thus reaching the anonymous requirement. Thirdly, based on the packet-based-uncertainty privacy protection model, a privacy protection algorithm is also designed in this paper. In order to reduce the loss of information and improve the practicability of the data, the algorithm combines the local generalization and partial deletion to process the set-valued data. The top-down local generalization is adopted in the processing process, and when the data does not meet the privacy requirement, the method of partial deletion is adopted to achieve the privacy requirement. The downward generalization of the project will reduce the loss of information, but the partial deletion will increase the loss, so the information loss before and after the generalization is to be evaluated at this time. If the information loss of the data after generalization is less, the generalization is adopted, otherwise the generalization is rejected. In the case of anonymous social network data, in order to improve the data utility, the algorithm can protect the integrity of the community structure as much as possible, that is, to preferentially delete the edge between the communities and to preferentially add the edges within the community, and to reduce the impact of the addition and deletion on the community structure. Finally, in order to validate the practicability of the algorithm, this paper evaluates the utility of the set-valued data from the aspects of information loss and the like, and measures the utility of social network data from the similar coefficient of Jardard and the like. The results of the experiment show that the algorithm has good data practicability while protecting the privacy.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP309
【相似文献】
相关期刊论文 前10条
1 ;守住你的秘密——隐私保护神[J];计算机与网络;2002年05期
2 李学聚;;新时期读者隐私保护探析[J];科技情报开发与经济;2006年13期
3 管重;;谁偷窥了你的隐私[J];数字通信;2007年15期
4 孔为民;;大学图书馆与隐私保护[J];科技情报开发与经济;2007年26期
5 尹凯华;熊璋;吴晶;;个性化服务中隐私保护技术综述[J];计算机应用研究;2008年07期
6 高枫;张峰;周伟;;网络环境中的隐私保护标准化研究[J];电信科学;2013年04期
7 高密;薛宝赏;;我的电脑信息 隐私保护很强大[J];网友世界;2010年11期
8 ;为自己的电子商务设计隐私保护[J];个人电脑;2000年07期
9 ;隐私保护的10个准则[J];个人电脑;2000年07期
10 岑婷婷;韩建民;王基一;李细雨;;隐私保护中K-匿名模型的综述[J];计算机工程与应用;2008年04期
相关会议论文 前10条
1 郑思琳;陈红;叶运莉;;实习护士病人隐私保护意识和行为调查分析[A];中华护理学会第8届全国造口、伤口、失禁护理学术交流会议、全国外科护理学术交流会议、全国神经内、外科护理学术交流会议论文汇编[C];2011年
2 孙通源;;基于局部聚类和杂度增益的数据信息隐私保护方法探讨[A];中国水利学会2013学术年会论文集——S4水利信息化建设与管理[C];2013年
3 张亚维;朱智武;叶晓俊;;数据空间隐私保护平台的设计[A];第二十五届中国数据库学术会议论文集(一)[C];2008年
4 公伟;隗玉凯;王庆升;胡鑫磊;李换双;;美国隐私保护标准及隐私保护控制思路研究[A];2013年度标准化学术研究论文集[C];2013年
5 张鹏;于波;童云海;唐世渭;;基于随机响应的隐私保护关联规则挖掘[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
6 桂琼;程小辉;;一种隐私保护的分布式关联规则挖掘方法[A];2009年全国开放式分布与并行计算机学术会议论文集(下册)[C];2009年
7 俞笛;徐向阳;解庆春;刘寅;;基于保序加密的隐私保护挖掘算法[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年
8 李贝贝;乐嘉锦;;分布式环境下的隐私保护关联规则挖掘[A];第二十二届中国数据库学术会议论文集(研究报告篇)[C];2005年
9 徐振龙;郭崇慧;;隐私保护数据挖掘研究的简要综述[A];第七届(2012)中国管理学年会商务智能分会场论文集(选编)[C];2012年
10 潘晓;郝兴;孟小峰;;基于位置服务中的连续查询隐私保护研究[A];第26届中国数据库学术会议论文集(A辑)[C];2009年
相关重要报纸文章 前10条
1 记者 李舒瑜;更关注隐私保护和人格尊重[N];深圳特区报;2011年
2 荷兰鹿特丹医学中心博士 吴舟桥;荷兰人的隐私[N];东方早报;2012年
3 本报记者 周静;私密社交应用风潮来袭 聚焦小众隐私保护是关键[N];通信信息报;2013年
4 独立分析师 陈志刚;隐私管理应归个人[N];通信产业报;2013年
5 本报记者 朱宁宁;商业利益与隐私保护需立法平衡[N];法制日报;2014年
6 袁元;手机隐私保护萌发商机[N];证券日报;2014年
7 王尔山;跟隐私说再见[N];21世纪经济报道;2008年
8 记者 武晓黎;360安全浏览器推“隐私浏览”模式[N];中国消费者报;2008年
9 早报记者 是冬冬;“美国隐私保护法律已过时”[N];东方早报;2012年
10 张晓明;隐私的两难[N];电脑报;2013年
相关博士学位论文 前10条
1 孟祥旭;基于位置的移动信息服务技术与应用研究[D];国防科学技术大学;2013年
2 兰丽辉;基于向量模型的加权社会网络发布隐私保护方法研究[D];江苏大学;2015年
3 柯昌博;云服务组合隐私分析与保护方法研究[D];南京航空航天大学;2014年
4 李敏;基于位置服务的隐私保护研究[D];电子科技大学;2014年
5 陈东;信息物理融合系统安全与隐私保护关键技术研究[D];东北大学;2014年
6 张柯丽;信誉系统安全和隐私保护机制的研究[D];北京邮电大学;2015年
7 Kamenyi Domenic Mutiria;[D];电子科技大学;2014年
8 孙崇敬;面向属性与关系的隐私保护数据挖掘理论研究[D];电子科技大学;2014年
9 刘向宇;面向社会网络的隐私保护关键技术研究[D];东北大学;2014年
10 高胜;移动感知计算中位置和轨迹隐私保护研究[D];西安电子科技大学;2014年
相关硕士学位论文 前10条
1 邹朝斌;SNS用户隐私感知与自我表露行为的关系研究[D];西南大学;2015年
2 李汶龙;大数据时代的隐私保护与被遗忘权[D];中国政法大学;2015年
3 孙琪;基于位置服务的连续查询隐私保护研究[D];湖南工业大学;2015年
4 尹惠;无线传感器网络数据融合隐私保护技术研究[D];西南交通大学;2015年
5 王鹏飞;位置服务中的隐私保护技术研究[D];南京理工大学;2015年
6 顾铖;基于关联规则的隐私保护算法研究[D];南京理工大学;2015年
7 崔尧;基于匿名方案的位置隐私保护技术研究[D];西安工业大学;2015年
8 毕开圆;社会网络中用户身份隐私保护模型的研究[D];大连海事大学;2015年
9 黄奚芳;基于差分隐私保护的集值型数据发布技术研究[D];江西理工大学;2015年
10 高超;具有隐私保护意识的大样本双盲随机对照试验数据管理系统的设计与实现[D];山东大学;2015年
,本文编号:2460136
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2460136.html