基于Hadoop平台的气象数据挖掘研究
[Abstract]:With the rapid development of Internet, computing and storage technology, the meteorological data stored by meteorological departments is increasing day by day. The new meteorological data in China reach the order of PB every year, and the types of meteorological data are relatively complex. This makes the traditional data storage and processing technology can not solve the needs of current users. At present, many research teams at home and abroad are committed to summing up and analyzing these massive data, and mining out the meteorological laws or patterns of practical significance. In recent years, cloud computing technology, as a new product in the field of Internet, provides a new opportunity for mass data storage and processing. Cloud computing technology has significant advantages in the field of massive data mining technology, and has been widely used. The overall idea of cloud computing is to use network interconnection technology to connect several computers together to achieve centralized management and unified scheduling of resources, which is equivalent to the formation of a resource pool. Hadoop technology, as a solution to deal with data in cloud computing software platform, has the characteristics of high fault tolerance, high throughput, low cost and so on. Hadoop technology transports traditional data mining technology to Hadoop cloud platform. The process of low cost and high efficiency data mining has been realized, which has become a trend in the research direction of meteorological data mining. In this paper, the data mining method based on Hadoop platform and the characteristics of meteorological data are deeply studied. In view of some shortcomings of the existing Hadoop classification data mining methods, combined with the advantages of Hadoop cloud platform in dealing with massive data, An improved classification algorithm based on MapReduce is proposed. For this reason, this paper mainly does the following research: (1) aiming at the large-scale characteristics of meteorological data, In this paper, Hadoop platform is used to preprocess the meteorological original data set and calculate the correlation coefficient between any two feature attributes, and the prediction attributes are selected by using correlation analysis technology. To a certain extent, the complexity of model training is reduced. (2) the advantages and disadvantages of typical meteorological data mining classification algorithms are analyzed. According to the association characteristics of meteorological data, this paper adopts the Bayesian network classification algorithm. In order to solve the uncertainty and relevance of things, it is more suitable for meteorological data analysis than other classification algorithms. (3) in the training process of Bayesian classification model, the accuracy evaluation is adopted. Iterative training is used for the model that does not meet the accuracy requirements, and the model parameters are constantly modified in order to obtain a better classification model, and the classification experiment of the test set is carried out. The experimental results show that the improved algorithm has a certain improvement in computational efficiency and performance compared with the existing algorithms.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13
【相似文献】
相关期刊论文 前10条
1 黄源,张福炎;数据挖掘及其技术实现[J];计算机应用与软件;2001年12期
2 香丽芸;浅谈数据挖掘及其应用[J];昌吉师专学报;2001年02期
3 郑雪燕,张杰明,岳洋;数据挖掘语言[J];计算机时代;2001年11期
4 刘明晶;数据挖掘[J];华南金融电脑;2001年04期
5 张伟;刘勇国;彭军;廖晓峰;吴中福;;数据挖掘发展研究[J];计算机科学;2001年07期
6 钟晓;马少平;张钹;俞瑞钊;;数据挖掘综述[J];模式识别与人工智能;2001年01期
7 朱建平,张润楚;数据挖掘的发展及其特点[J];统计与决策;2002年07期
8 傅岚;在数据海洋中打捞信息数据挖掘[J];科技广场;2002年11期
9 李峻;数据挖掘,企业洞察先机的“慧眼”[J];中国计算机用户;2002年48期
10 罗可,蔡碧野,卜胜贤,谢中科;数据挖掘及其发展研究[J];计算机工程与应用;2002年14期
相关会议论文 前10条
1 史东辉;蔡庆生;张春阳;;一种新的数据挖掘多策略方法研究[A];第十七届全国数据库学术会议论文集(研究报告篇)[C];2000年
2 张弦;;数据挖掘在农业中的应用[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年
3 魏顺平;;教育数据挖掘:现状与趋势[A];信息化、工业化融合与服务创新——第十三届计算机模拟与信息技术学术会议论文集[C];2011年
4 关清平;沉培辉;;概率网络在数据挖掘上的应用[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
5 丁瑾;;基于Web数据挖掘的综述[A];山西省科学技术情报学会学术年会论文集[C];2004年
6 聂茹;田森平;;Web数据挖掘及其在电子商务中的应用[A];中南六省(区)自动化学会第24届学术年会会议论文集[C];2006年
7 李菊;王军;;数据挖掘在客户关系管理的应用[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
8 肖阳;李启贤;;数据挖掘在中国钢铁行业中的应用[A];中国计量协会冶金分会2012年会暨能源计量与节能降耗经验交流会论文集[C];2012年
9 杨磊;王贵成;汪勇;张占胜;;SQL Server 2005在数据挖掘中的应用[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
10 谢中;邱玉辉;;面向商务网站有效性的数据挖掘方法[A];第十八届全国数据库学术会议论文集(技术报告篇)[C];2001年
相关重要报纸文章 前10条
1 本报记者褚宁;数据挖掘如“挖金”[N];解放日报;2002年
2 周蓉蓉;数据挖掘需要点想像力[N];计算机世界;2004年
3 □中国电信股份有限公司北京研究院 张舒博 □北京邮电大学计算机科学与技术学院 牛琨;走出数据挖掘的误区[N];人民邮电;2006年
4 《网络世界》记者 王莹;数据挖掘保险业的新蓝海[N];网络世界;2012年
5 刘俊丽;基于地理化的网络数据挖掘与分析提升投资有效性[N];人民邮电;2014年
6 本报记者 连晓东;数据挖掘:金融信息化新热点[N];中国电子报;2002年
7 本报记者 凤小华 朱仁康;“数字挖掘软件”引领中国信息化新浪潮[N];中国电子报;2003年
8 本报记者 史延廷;“成功企业数据挖掘暨数量化管理论坛”在京举办[N];中国旅游报;2002年
9 朱小宁;数据挖掘:信息化战争的基础工程[N];解放军报;2005年
10 本报记者 王小平;从“大集中”走向数据挖掘[N];金融时报;2002年
相关博士学位论文 前10条
1 于自强;海量流数据挖掘相关问题研究[D];山东大学;2015年
2 张馨;全基因组SNP芯片应用于CNV和L0H分析的软件比对与数据挖掘[D];复旦大学;2011年
3 彭计红;基于数据挖掘的痴呆中医证的研究[D];南京中医药大学;2015年
4 李秋虹;基于MapReduce的大规模数据挖掘技术研究[D];复旦大学;2013年
5 邬文帅;基于多目标决策的数据挖掘方法评估与应用[D];电子科技大学;2015年
6 谢邦彦;整合数据挖掘与TRIZ理论的质量管理方法研究[D];首都经济贸易大学;2010年
7 何伟全;云南高校学生意外伤害因素关联规则挖掘及风险管控体系研究[D];昆明理工大学;2015年
8 段功豪;基于多结构数据挖掘的滑坡灾害预测模型研究[D];中国地质大学;2016年
9 白晓明;基于数据挖掘的复合材料宏—细观力学模型研究[D];哈尔滨工业大学;2016年
10 蓝永豪(LAM Wing Ho);基于数据挖掘技术分析当代中医名家痤疮验方经验研究[D];南京中医药大学;2016年
相关硕士学位论文 前10条
1 孙靖;基于Hadoop平台的气象数据挖掘研究[D];北京邮电大学;2016年
2 祖晓晖;基于数据挖掘的智慧健康服务平台设计与实现[D];南京邮电大学;2017年
3 林仁红;基于数据挖掘的机遇识别与评价研究[D];首都经济贸易大学;2007年
4 张彦俊;游戏运营中的数据挖掘[D];复旦大学;2011年
5 焦亚召;基于多核函数FCM算法在数据挖掘聚类中的应用研究[D];昆明理工大学;2015年
6 王杰锋;物联网能耗数据智能分析及其应用平台设计[D];江南大学;2015年
7 刘学建;数据挖掘在电子商务推荐系统中的应用研究[D];昆明理工大学;2015年
8 戴阳阳;基于数据挖掘的金融时间序列预测研究与应用[D];江南大学;2015年
9 石思优;基于主题模型的医疗数据挖掘研究[D];广东技术师范学院;2015年
10 陈丹;移动互联网信令挖掘实现智慧营销的设计与实现应用研究[D];华南理工大学;2015年
,本文编号:2480254
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2480254.html