基于图像的试验数据识别与管理系统
[Abstract]:With the rapid development of scientific research technology, the measurement and testing ability of enterprises is improving, and the testing tasks of products are also increasing, resulting in a large number of test data. In recent years, enterprises have tried to use the establishment of data management system to complete the collection and management of test data, but the completed test data are still stored in paper forms, which requires a lot of manpower to input the data into the management system. In order to reduce the manpower investment and improve the work efficiency more effectively, this paper studies the table content recognition technology, and designs a content extraction algorithm for a variety of style tables. The design of the test data recognition software based on image is completed, and the fast positioning and accurate recognition of the test data are realized. The test data recognition software is used as the test data acquisition terminal, and the test data management system is built, and the process management and data management of the enterprise are studied. The main work of this paper is as follows: (1) the technology of table content recognition is studied. Table content recognition needs to eliminate the interference of horizontal and longitudinal table lines to text content, realize the separation of word lines, and then through the positioning cell, Extract the content and complete the text recognition. (2) based on the table content recognition algorithm, a set of experimental data automatic recognition software is designed. The scanned table images are preprocessed, the image quality is improved, the layout analysis is completed, and the useful information is highlighted. The table frame lines are extracted, all the cell areas are located, the text content is cut out, and the character recognition is completed. The handwritten digital library is trained to further improve the recognition efficiency of handwritten fonts, and the manual backward error correction is carried out to completely correct the recognition results. After many tests, the automatic recognition accuracy of the software is more than 90%. After a small amount of manual intervention, the software can fully meet the requirements of enterprise applications. The problem of automatic input is solved effectively. (3) the experimental data management system is built in PC terminal, and the design and implementation of four modules: security maintenance management, test task management, test flow management and database management are completed. The system architecture and middleware technology based on SOA are studied, the test management flow is planned reasonably, the database model is built, and the efficiency of managing test data is improved.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41;TP315
【参考文献】
相关期刊论文 前7条
1 Harold Mouchère;李锦鹏;Christian Viard-Gaudin;陈肇欣;;多笔画联机手写字符识别的动态时间规正算法(英文)[J];华南理工大学学报(自然科学版);2013年07期
2 唐佳林;王镇波;张鑫鑫;;基于霍夫变换的直线检测技术[J];科技信息;2011年14期
3 卫志华;苗夺谦;夏富春;张红云;;一种基于结构的票据定位新方法[J];计算机应用;2006年10期
4 贾婧;葛万成;陈康力;;基于轮廓结构和统计特征的字符识别研究[J];沈阳师范大学学报(自然科学版);2006年01期
5 张重阳,陈强,娄震,杨静宇;基于灰度图像的表格框线去除算法[J];计算机研究与发展;2005年04期
6 吴洋,田学东;中文版面分析中表格的识别[J];河北工业科技;2002年02期
7 郑冶枫,刘长松,丁晓青,潘世言;基于有向单连通链的表格框线检测算法[J];软件学报;2002年04期
相关博士学位论文 前1条
1 陈光;特定领域OCR系统的精度与速度问题研究[D];北京邮电大学;2007年
相关硕士学位论文 前8条
1 张爱娟;基于结构特征点的字符分割技术的研究[D];西安电子科技大学;2014年
2 黄锦辉;福建烟草数据中心主数据管理系统的设计与实现[D];厦门大学;2013年
3 陈培培;Android平台视频中字符实时识别技术的研究[D];南京信息工程大学;2013年
4 肖蕾蕾;基于Android的光学字符识别研究与实现[D];武汉理工大学;2013年
5 马振森;航天二院试验数据管理系统的设计与实现[D];北京工业大学;2012年
6 王淞;表格手写内容识别系统的设计与实现[D];华中科技大学;2011年
7 王树海;BP神经网络与支持向量机二级识别手写体数字[D];北京邮电大学;2007年
8 李霞;MVC设计模式的原理与实现[D];吉林大学;2004年
,本文编号:2483248
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2483248.html