当前位置:主页 > 科技论文 > 软件论文 >

基于RGB-D大规模数据集的人体行为识别算法研究

发布时间:2019-05-24 15:31
【摘要】:进入21世纪,随着信息技术的发展和人类生活的不断智能化,计算机视觉正日益影响到人们生活的各个方面,而人体行为识别及分析,因其广泛的应用前景和实用价值,近几年来一直都是计算机视觉方向的研究热点。人体行为识别,即对原始的视频图像序列进行分析,提取相关的行为特征信息,最后对这些信息进行解释以实现对人体行为的识别和学习。尽管计算机技术和图像处理技术的快速发展极大地推动了行为识别领域的研究,而且随着大数据技术的普及,算法的性能越来越多地依赖于数据集,然而如何选择有效行为特征,以及目前数据集存在的遮挡、背景单一和缺少大量样本数据等问题,使得基于大量数据的复杂自然场景下的人体行为识别技术仍然是一个非常具有挑战性的研究领域。彩色-深度(RGB-Depth,RGB-D)传感器能够同时提供彩色和深度图像,3D深度信息可以直接获取而不再需要额外的计算,这为深度信息在人体行为识别领域内的应用提供了很大的方便。人体行为的识别和分析是依托于行为数据集进行的,在行为识别研究的过程中,先后出现了多种数据集,目前存在的公共RGB-D行为数据集由于有限的行为类别,行为样本数量以及单一化的背景环境,很难用于基于大量数据的复杂自然场景下的行为识别。因此,本文建立了一个综合性RGB-D大规模行为数据集,以促进对复杂自然场景下人体行为识别的研究,同时,基于该综合性数据集应用了三种特征提取算法。本文的具体研究内容如下:第一,分析了人体行为识别的研究背景、意义和目的,从数据集、特征提取和分类器三个层面综述了人体行为识别的研究现状,对基于RGB-D的行为识别研究面临的问题进行了阐述,介绍了本文的主要研究内容和章节安排。第二,阐述了 RGB-D传感器的优点以及深度信息在人体行为识别中的重要性,对目前已经存在的一些RGB-D数据集进行了详细的介绍,并比较了它们的优缺点。第三,选择了五个常用典型的RGB-D数据集,通过对这五个数据集中的数据进行预处理、统计分析,最后整合成一个综合性的RGB-D大数据集,并且对RGB-D大规模数据集中的行为类别进行了重新标定,统一了数据存储格式。该部分主要对建立大规模数据集中的工作做了具体的描述,同时介绍了 RGB-D大规模数据集的数据信息、优势以及建立意义。第四,基于RGB-D大规模数据集提取了深度行为投影图(Depth Motion Maps,DMMs)、深度立方体相似性特征(Depth Cuboid Similarity Feature,DCSF)和曲率尺度空间(Curvature Space Scale,CSS)三种类型的特征。DMMs特征累计整个深度视频序列里两个连续帧投影图之间的绝对差(运动能量);DCSF描述了围绕时空兴趣点构造的尺度自适应3D深度立方体之间的相似性关系;CSS可以表示不同尺度水平下人体轮廓曲线的不变特征。三种特征提取算法分别在五个子数据集和综合性大数据集上进行实验,应用协作表示分类器(Collaborative Representation Classifier,CRC)对人体行为进行识别,通过对实验结果的比较和分析来验证所建立RGB-D大规模数据集的适用性和有效性。最后,对本文所做的全部工作进行整理总结,并对未来的研究方向进行展望。
[Abstract]:In the 21st century, with the development of information technology and the increasingly intelligent of human life, computer vision is increasingly affecting all aspects of people's life, and human behavior identification and analysis, because of its wide application prospect and practical value, In recent years, it has been a hot topic in computer vision. The human behavior recognition, that is, the original video image sequence is analyzed, relevant behavior characteristic information is extracted, and finally, the information is interpreted so as to realize the identification and learning of human behavior. Although the rapid development of computer technology and image processing technology has greatly promoted the research in the field of behavior recognition, and with the popularization of large-data technology, the performance of the algorithm is increasingly dependent on the data set, however, how to select the effective behavior feature, As well as the problems such as occlusion, background single and lack of large amount of sample data in the current data set, the human behavior recognition technology under the complex natural scene based on the large amount of data is still a very challenging research field. The color-depth (RGB-Depth, RGB-D) sensor can provide both color and depth images at the same time, and the 3D depth information can be directly acquired without additional calculation, which provides great convenience for the application of the depth information in the field of human behavior identification. The identification and analysis of human behavior is based on the behavior data set. In the course of the study of behavior recognition, a variety of data sets have been presented, and the existing common RGB-D behavior data sets are due to the limited behavior category, the number of behavior samples and the single background environment. It is difficult to use for behavior recognition in complex natural scenes based on a large amount of data. Therefore, a comprehensive RGB-D large-scale behavior data set is established to promote the research of human behavior recognition in complex natural scene, and three feature extraction algorithms are applied based on the comprehensive data set. The research contents of this paper are as follows: First, the research background, meaning and purpose of human behavior recognition are analyzed, the research status of human behavior recognition is summarized from three aspects of data set, feature extraction and classifier, and the problems facing the research of behavior recognition based on RGB-D are described. The main contents and chapters of this paper are introduced. Secondly, the advantages of RGB-D sensor and the importance of depth information in human behavior recognition are described, and some of the existing RGB-D data sets are described in detail, and their advantages and disadvantages are compared. thirdly, five typical RGB-D data sets are selected, the data in the five data sets are pre-processed, analyzed and finally integrated into a comprehensive RGB-D large data set, and the behavior categories in the RGB-D large-scale data set are re-calibrated, The data storage format is unified. This part mainly describes the establishment of large-scale data set, and introduces the data information, advantage and significance of the large-scale data set of RGB-D. Fourth, based on the RGB-D large-scale data set, three types of features of the depth behavior projection (DMM), the depth cube similarity feature (DCSF) and the curvature scale space (CSS) are extracted. The DMs feature accumulates the absolute difference (motion energy) between two consecutive frame projections in the entire depth video sequence; the DCSF describes the similarity relationship between the scale adaptive 3D depth cubes constructed around the space-time interest point structure; CSS can represent the invariant feature of the human profile curve at different scale levels. The three feature extraction algorithms are tested on the five sub-data sets and the comprehensive large data set, and the cooperative expression classifier (CRC) is used to identify the human behavior. The applicability and validity of the established RGB-D large-scale data set are verified by the comparison and analysis of the experimental results. Finally, the whole work done in this paper is summarized, and the future research direction is expected.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 刘相滨,向坚持,王胜春;人行为识别与理解研究探讨[J];计算机与现代化;2004年12期

2 李宁;须德;傅晓英;袁玲;;结合人体运动特征的行为识别[J];北京交通大学学报;2009年02期

3 张伟东;陈峰;徐文立;杜友田;;基于阶层多观测模型的多人行为识别[J];清华大学学报(自然科学版);2009年07期

4 吴联世;夏利民;罗大庸;;人的交互行为识别与理解研究综述[J];计算机应用与软件;2011年11期

5 申晓霞;张桦;高赞;薛彦兵;徐光平;;一种鲁棒的基于深度数据的行为识别算法[J];光电子.激光;2013年08期

6 郑胤;陈权崎;章毓晋;;深度学习及其在目标和行为识别中的新进展[J];中国图象图形学报;2014年02期

7 曾青松;余明辉;贺卫国;李玲;;一种行为识别的新方法[J];昆明理工大学学报(理工版);2009年06期

8 谷军霞;丁晓青;王生进;;基于人体行为3D模型的2D行为识别[J];自动化学报;2010年01期

9 李英杰;尹怡欣;邓飞;;一种有效的行为识别视频特征[J];计算机应用;2011年02期

10 王新旭;;基于视觉的人体行为识别研究[J];中国新通信;2012年21期

相关会议论文 前7条

1 苗强;周兴社;於志文;倪红波;;一种非觉察式的睡眠行为识别技术研究[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年

2 齐娟;陈益强;刘军发;;基于多模信息感知与融合的行为识别[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年

3 方帅;曹洋;王浩;;视频监控中的行为识别[A];2007中国控制与决策学术年会论文集[C];2007年

4 黄紫藤;吴玲达;;监控视频中简单人物行为识别研究[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年

5 安国成;罗志强;李洪研;;改进运动历史图的异常行为识别算法[A];第八届中国智能交通年会优秀论文集——智能交通与安全[C];2013年

6 王忠民;曹栋;;坐标转换在移动用户行为识别中的应用研究[A];2013年全国通信软件学术会议论文集[C];2013年

7 刘威;李石坚;潘纲;;uRecorder:基于位置的社会行为自动日志[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年

相关重要报纸文章 前4条

1 李晨光;导入CIS要注意什么?[N];河北经济日报;2001年

2 农发行鹿邑支行党支部书记 行长 刘永贞;发行形象与文化落地农[N];周口日报;2007年

3 东林;行为识别新技术让监控没有“死角”[N];人民公安报;2007年

4 田凯 徐蕊 李政育 信木祥;博物馆安全的国际经验[N];中国文物报;2014年

相关博士学位论文 前10条

1 邵延华;基于计算机视觉的人体行为识别研究[D];重庆大学;2015年

2 仝钰;基于条件随机场的智能家居行为识别研究[D];大连海事大学;2015年

3 冯银付;多模态人体行为识别技术研究[D];浙江大学;2015年

4 姜新波;基于三维骨架序列的人体行为识别研究[D];山东大学;2015年

5 裴利沈;视频中人体行为识别若干问题研究[D];电子科技大学;2016年

6 周同驰;行为识别中基于局部时空关系的特征模型研究[D];东南大学;2016年

7 徐海燕;复杂环境下行为识别特征提取方法研究[D];东南大学;2016年

8 吴云鹏;集体行为的识别与仿真研究[D];郑州大学;2017年

9 刘艳秋;舍饲环境下母羊产前典型行为识别方法研究[D];内蒙古农业大学;2017年

10 何卫华;人体行为识别关键技术研究[D];重庆大学;2012年

相关硕士学位论文 前10条

1 唐小琴;基于全局和局部运动模式的人体行为识别研究[D];西南大学;2015年

2 胡秋扬;可穿戴式个人室内位置和行为监测系统[D];浙江大学;2015年

3 陈钰昕;基于时空特性的人体行为识别研究[D];燕山大学;2015年

4 任亮;智能车环境下车辆典型行为识别方法研究[D];长安大学;2015年

5 金泽豪;并行化的人体行为识别方法研究与实现[D];华南理工大学;2015年

6 王呈;穿戴式多传感器人体日常活动监测系统设计与实现[D];南京理工大学;2015年

7 王露;基于稀疏时空特征的人体行为识别研究[D];苏州大学;2015年

8 于静;基于物品信息和人体深度信息的行为识别研究[D];山东大学;2015年

9 章瑜;人体运动行为识别相关方法研究[D];南京师范大学;2015年

10 赵扬;家庭智能空间下基于行走轨迹的人体行为理解[D];山东大学;2015年



本文编号:2484981

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2484981.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1912b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com