基于图像分割和模式识别的钢材断口图像分析方法研究
[Abstract]:Drop hammer tear test (DropWeightTearTest, drop hammer tear test) is a test of falling hammer breaking of prefabricated notched materials. The shear percentage of fracture surface is calculated to evaluate the toughness of the material. At present, it mainly depends on artificial visual judgment of the area percentage of toughness zone, subjective factors affect the accuracy, detection efficiency is low, there is an urgent need for automatic testing instruments. However, the image mode of the fracture surface of the falling hammer tear specimen is very complex: the ductile zone, the brittle zone is mixed, and the height fluctuation can reach 30mm, which brings great technical challenge to the automatic discrimination of imaging and lighting, especially the image. In this paper, through the in-depth study of falling hammer tear fracture characteristics and machine vision technology, an evaluation method based on image segmentation and pattern classification is proposed, the fracture image acquisition platform is built, and the detection software is developed. The related experiments are carried out to verify the whole detection system. Firstly, combined with the optical reflection characteristics and three-dimensional characteristics of the fracture surface, the overall design of the fracture image analysis system is solved, and then the image preprocessing is carried out by using threshold segmentation, mean filtering, image fusion and other algorithms. Image segmentation is carried out for different fracture types of images. The digital image features of the segmented region are extracted to train the Gao Si hybrid model and the support vector machine classifier, and a suitable image classification model is obtained. Finally, the fracture region recognition and classification of the fracture image is realized. The evaluation results of the algorithm are compared with those of human experts. The experimental results show that the absolute error between the automatic evaluation algorithm designed in this paper and the evaluation results of human experts is less than 4%. The automatic evaluation of the tear fracture of the drop hammer can be realized.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 方健;刘国栋;张建伟;徐惟诚;周立富;;机器视觉技术在评定DWTT试样断口中的应用[J];理化检验(物理分册);2015年04期
2 吴一全;孟天亮;吴诗Zs;;图像阈值分割方法研究进展20年(1994—2014)[J];数据采集与处理;2015年01期
3 许红玉;蔡坦坦;叶良凯;李梦卓;张梦雪;孟伟丽;胡晶晶;;分水岭算法在CT图像分割中的应用[J];中国医学物理学杂志;2014年06期
4 王晶;卢爱凤;杜鹃;蒲江;张婷;;管线钢落锤撕裂性能评定影响因素[J];莱钢科技;2014年05期
5 王馨;王军生;赵红阳;王靖震;;管线钢落锤撕裂实验断口的图像分割分析[J];辽宁科技大学学报;2013年06期
6 伊力哈木·亚尔买买提;;基于改进的自适应分水岭图像分割方法研究[J];计算机仿真;2013年02期
7 王博;;一种快速均值滤波算法[J];计算机光盘软件与应用;2012年10期
8 张荣建;张志强;祖述勋;;钢管混凝土拱桥安全性评价的SVM机器模型[J];混凝土;2011年11期
9 张野;杨建林;;基于KNN和SVM的中文文本自动分类研究[J];情报科学;2011年09期
10 张凤晶;程红;孙文邦;;基于小波变换的图像融合方法研究[J];影像技术;2010年06期
相关博士学位论文 前2条
1 陈雪峰;图像高斯混合模型的判别学习方法[D];北京理工大学;2009年
2 李蓓蓓;三维织物仿真的研究[D];东华大学;2007年
相关硕士学位论文 前10条
1 张凯;基于图像熵的直线电机动子位置测量方法研究[D];安徽大学;2016年
2 邱藤;基于高斯混合模型的EM算法及其应用研究[D];电子科技大学;2015年
3 陈怡兰;钎焊用铝硅、铝硅铜合金药芯焊丝的研究[D];北京工业大学;2014年
4 欧W毥,
本文编号:2487909
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2487909.html