基于视觉的家居服务机器人物体感知研究
[Abstract]:With the development of society and the increasingly serious problem of aging, the demand for home service robots is becoming more and more urgent. Good object perception ability is the premise of intelligent operation for home service robots, and it is also a research focus in the field of machine vision. The unstructured home environment, the variety of objects, the arbitrary placement of objects in different positions, the mutual contact and occlusion between multiple objects, and the fuzziness of the images caused by robot motion. And real-time requirements have brought a lot of difficulties to robot object perception. The main research contents of this paper are as follows: firstly, a complete object recognition system of home service robot is designed and implemented based on SURF features. It mainly includes three processes: feature point detection, feature point description and feature point matching, and improves the mismatching problem. RANSAC algorithm is used for matching purification, which effectively eliminates the mismatching. The hardware platform of the robot is built and the recognition experiment is carried out in the indoor unstructured environment. The results show that the method has good robustness, but the real-time performance needs to be improved. Secondly, in order to further improve the performance of the system, a robot object recognition algorithm based on salient area guidance is proposed. Through the visual selective attention mechanism, the significant region in the image is selected, the SURF feature of the significant region is extracted, and the recognition of the target object in the scene is realized by matching the feature points. The experimental results show that compared with the traditional SURF algorithm, the recognition rate and recognition speed of the improved algorithm are effectively improved. Finally, in order to solve the problem that the traditional Camshift algorithm needs to select and track the target manually, an unsupervised object tracking algorithm for home service robot based on detection is proposed. SURF feature matching is used to automatically find the target object, and the automatic tracking is realized. In order to solve the problem that the traditional Camshift algorithm is vulnerable to similar color interference, SURF features are integrated into the framework of Camshift algorithm, and a Camshift object tracking algorithm based on SURF features is proposed. The experimental results show that the algorithm can effectively solve the problem of tracking failure of the traditional Camshift algorithm in the context of similar color to the target.
【学位授予单位】:河北工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TP391.41;TP242
【相似文献】
相关期刊论文 前10条
1 牛检伟;;库卡机器人在高铁弹条生产线的应用[J];郑铁科技;2012年04期
2 浙江大学工业控制技术国家重点实验室机器人团队;;爬行与行走机器人及移动机器支撑技术[J];国际学术动态;2016年04期
3 丁宁;;人机共生时代的机器人设计与探索[J];机器人产业;2018年06期
4 ;英伟达建立机器人实验室 专注厨房辅助机器人等10多个项目[J];智能机器人;2019年01期
5 曹东;田富洋;宋占华;闫银发;李法德;蔡占河;;AMR果蔬自动收获机器人动力学建模与实时控制[J];农机化研究;2018年02期
6 杨存志;吴泽全;郭洋;;挤奶机器人的结构设计[J];农机化研究;2018年04期
7 苗玉刚;文家雄;尹艺澄;;多功能清洁机器人机械结构设计与控制[J];机械制造;2018年02期
8 梁万前;;我国机器人产业发展现状研究[J];山东工业技术;2018年10期
9 王智龙;杨萌;刘兵;;一种新型多足对称机器人的研究[J];内燃机与配件;2018年08期
10 ;机器人教育普及进行时[J];机器人产业;2018年03期
相关会议论文 前10条
1 王明辉;王楠;李斌;;面向灾难救援的机器人控制站系统设计[A];中国仪器仪表学会第十二届青年学术会议论文集[C];2010年
2 鲍平安;蒋平;陈辉堂;王月娟;;基于模型学习的机器人控制方法[A];1995中国控制与决策学术年会论文集[C];1995年
3 宋建梅;田树苞;刘鲁源;;神经网络在机器人控制中的应用[A];1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(上册)[C];1995年
4 刘亚威;赵旭;;航空制造推动新概念机器人发展[A];2018年军工装备技术专刊论文集[C];2018年
5 展杰;胡斌;王丽晶;;陆空机器人在消防救援中的应用研究[A];2018中国消防协会科学技术年会论文集[C];2018年
6 佟惠军;张少军;刘泽乾;;神经网络在机器人控制中的应用[A];1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(下册)[C];1995年
7 孙吉利;;多工序复用翻身机器人动作及节拍优化改进研究[A];2018中国汽车工程学会年会论文集[C];2018年
8 鲍平安;陈辉堂;;机器人控制的并行处理技术研究[A];1996年中国控制会议论文集[C];1996年
9 陈勇;桂卫华;阳春华;王随平;谢永芳;;深海采矿移动机器人控制的关键技术[A];第二十六届中国控制会议论文集[C];2007年
10 周维;刘有源;孙波;;人工智能与机器人控制的探讨[A];全国先进制造技术高层论坛暨制造业自动化、信息化技术研讨会论文集[C];2005年
相关重要报纸文章 前10条
1 本报记者 刘勇;为传统机器人增添“智慧大脑”[N];光明日报;2019年
2 罗玲;“灵巧机器人”提升战斗力[N];解放军报;2019年
3 本报记者 卢e,
本文编号:2493218
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2493218.html