红外弱小多目标实时处理
[Abstract]:Infrared imaging technology is widely used in civil and military fields because of its good concealment, strong anti-interference ability and all-weather work. However, the imaging distance of infrared small and weak targets is long and the background clutter interference is serious, which makes the imaging signal-to-noise ratio (SNR) low and the structure information insufficient. The research of weak and small target detection and weak small target tracking method has become the key to infrared small and weak multi-target real-time processing technology, and plays a key role in infrared guidance and other fields. This paper takes the actual scientific research project as the research background, based on FPGA DSP architecture to realize the design and optimization of infrared image real-time processing method. The background clutter and noise interference of infrared weak and small multi-target image is serious, so image preprocessing is very important. Therefore, this paper adopts improved median filtering to adapt to different noise types and noise density, and changes the window shape while changing the length of sliding window. And make sure to filter with a smaller window. Based on the target and background characteristics, the improved morphological background suppression algorithm is adopted, and the fluctuating image background is extracted by the semi-circular combined structure element with scale change, and the background clutter is effectively suppressed. In the aspect of weak and small multi-target detection, combined with the point diffusion model with scale factor, the image is represented in Laplace Gao Si scale space, and the target position and size are preliminarily determined. All suspicious targets are extracted by the threshold judgment of the mean value of each direction difference, and then the real target detection is realized according to the target size combined with the difference degree of each direction. In the aspect of weak and small multi-target tracking, in order to realize reliable tracking and match the filter with different data update rate, the mean drift Kalman filter is matched to the low-speed moving target. The high maneuvering moving target matching improves the mean drift particle filter, and carries on the interactive fusion to obtain the target tracking result. In order to realize the reliable tracking of the multi-target, in order to realize the reliable tracking of the multi-target, by combining the Markov random network, Considering the state of the adjacent targets of each target, the maximum joint posterior probability of each target is estimated, the filter parameters and particle weights are updated, and the multi-target position estimation is carried out. Based on the infrared real-time image processing platform, a large number of data taken continuously by the medium-wave infrared camera with a resolution of 640 / 512 are processed in real time through the algorithm transplantation. The processing results show that in the aspect of image preprocessing, The improved median filter noise smoothing algorithm and the improved morphological background suppression algorithm used in this paper have good processing effect and real-time performance. In the aspect of multi-target detection, the proposed algorithm based on scale space has better robustness and higher detection rate than the existing algorithms, and the average processing time of a single frame is less than 5 Ms. Meet the real-time requirements of processing; In the aspect of multi-target tracking, the tracking accuracy of the multi-model improved Kalman particle filter combined with Markov stochastic network is three times higher than that of the traditional interactive multi-model algorithm, and the processing speed can reach 72 frames / S. The tracking reliability is high and the real-time performance is good. To sum up, the real-time processing method of infrared weak and small multi-target in this paper is reliable and has high practical application value.
【学位授予单位】:苏州科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 邵学军;计算机实时处理选票系统的票箱装置[J];计算机应用通讯;1982年01期
2 刘键;;分布式实时处理软件研究的若干问题[J];计算机科学;1990年03期
3 李德领;马潮;;嵌入式系统中短消息实时处理的实现[J];单片机与嵌入式系统应用;2006年01期
4 杜光会;;国内外零售业软件的异同[J];信息与电脑;1998年03期
5 彭慧,樊建荣;路桥收费数据的实时处理[J];信息与控制;2001年04期
6 李在雄;无线寻呼信息的计算机实时处理[J];电子技术应用;1996年12期
7 黄晓菁,彭东青,舒强,雷国伟;图像相关识别器的光信号计算机实时处理[J];仪器仪表学报;2005年S1期
8 沈伯宁;单板微型计算机用于飞行数据实时处理[J];电子技术应用;1984年03期
9 张承云,谢志文,谢菠荪;多媒体计算机的音频实时处理[J];电声技术;2000年01期
10 陈彦萼 ,吴勤勤 ,沈关梁;色谱定量分析数据电子计算机实时处理中的若干问题[J];华东化工学院学报;1981年04期
相关会议论文 前6条
1 吕维加;;肌电的计算机实时处理[A];第五届全国运动生物力学学术会议论文摘要[C];1985年
2 黄晓菁;彭东青;舒强;雷国伟;;图像相关识别器的光信号计算机实时处理[A];第三届全国信息获取与处理学术会议论文集[C];2005年
3 陆惠民;陈革新;张红桔;;MT多用脉图自动分析系统——医理研究[A];中国中医药信息研究会第二届理事大会暨学术交流会议论文汇编[C];2003年
4 焉德广;庞福文;;抽取内差器的实时处理结构及其FPGA实现[A];中国航海学会通信导航专业委员会2004学术年会论文集[C];2004年
5 郭咏梅;毛士艺;李少洪;;SAR实时处理机中的IQ校正问题[A];第九届全国信号处理学术年会(CCSP-99)论文集[C];1999年
6 汤小林;;实现在AutoCAD中对大地坐标的实时处理[A];第七届全国矿山测量学术会议论文集[C];2007年
相关重要报纸文章 前1条
1 李国敏;共赢安全大数据[N];科技日报;2013年
相关博士学位论文 前1条
1 王俊;全数字式高分辨率SAR实时处理机研究[D];北京航空航天大学;2001年
相关硕士学位论文 前10条
1 戴菲;基于Storm的实时计算系统的研究与实现[D];西安电子科技大学;2014年
2 刘Z阪,
本文编号:2493300
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2493300.html