基于众包UGC的交通用户分类推荐模型
[Abstract]:In the last 10 years of the WEB 2.0 era, the number of Internet netizens with geometric multiples and the new network interaction with the development of science and technology have enabled a large number of information to be generated and disseminated in many Internet platforms. As a "rising star" in the era of WEB 2.0 platform, Intelligent Transportation Information platform still relies on large-scale deployment of sensors and other hardware, as the main way to collect traffic information. Inevitably, the limitation of relying on equipment to collect data is exposed, and the waste of massive UGC data existing on the platform is caused. In view of this background and the research status at home and abroad, this paper proposes a traffic user classification and recommendation model based on crowdsourcing UGC. Based on the model, this paper mainly studies the following three aspects. 1. The relationship between traffic user behavior characteristics and crowdsourcing UGC, and the related research of user attributes reflected by this relationship. Research on discriminant criteria and related algorithms of traffic user classification recommendation model dependence. 3. Simulation of intelligent transportation information platform based on information generation. In this paper, the intelligent traffic information platform based on Cartesian coordinate system is used as the simulation foundation, combined with the platform characteristics of WEB 2.0 era, the characteristics of crowdsourcing UGC, the characteristics of user behavior and so on. With the help of quality control strategy and Shapley power index in cooperative game, graph theory related knowledge, shortest path algorithm, dynamic programming algorithm of route matching, word segmentation tool and so on, the crowdsourcing UGC is combined with the recommended scheme of user classification. The validity and feasibility of the model in traffic information platform are verified by the data. The results of the traffic user classification recommendation model based on crowdsourcing UGC provide users with relatively real-time traffic information recommendation, friend recommendation and so on, which is convenient for users to obtain the information they really care about, and achieves "taking it from users." Use it for users. And this is the ultimate significance of this topic.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【参考文献】
相关期刊论文 前10条
1 李正熙;;中国城市智能交通系统产业化发展趋势[J];自动化博览;2015年07期
2 马春艳;崔鹏;金明日;;基于二维地图的连通路径快速查找算法[J];无线互联科技;2014年10期
3 李萍;;浅谈国外智能交通系统的应用和发展趋势[J];吉林交通科技;2014年03期
4 荣辉桂;火生旭;胡春华;莫进侠;;基于用户相似度的协同过滤推荐算法[J];通信学报;2014年02期
5 张志强;逄居升;谢晓芹;周永;;众包质量控制策略及评估算法研究[J];计算机学报;2013年08期
6 陆悠;华泽;盛浩;奚雪峰;;基于用户及其行为社会属性的信任测度模型[J];计算机科学;2013年01期
7 刘宇轩;郭玉翠;;基于Shapley熵的主观信任模型[J];计算机应用研究;2012年12期
8 张利斌;钟复平;涂慧;;众包问题研究综述[J];科技进步与对策;2012年06期
9 薛明;刘春;肖学年;;基于WebGIS的复杂城市交通网络信息服务[J];测绘通报;2011年12期
10 王峰博;崔先国;丁琳;原建顺;;基于Dijkstra算法驾车导航路径研究与实现[J];中国西部科技;2011年34期
相关会议论文 前3条
1 向少华;李文江;高原;王川;王枫;;深圳市云计算产学研联盟现状及发展浅析[A];第九届中国科技政策与管理学术年会论文集[C];2013年
2 聂轰;陈湘涛;;一种基于欧氏距离加权的连通聚类算法[A];2008'中国信息技术与应用学术论坛论文集(二)[C];2008年
3 吴建平;蒋冰蕾;王渤;;英国智能交通发展现状与趋势[A];2007第三届中国智能交通年会论文集[C];2007年
相关硕士学位论文 前2条
1 杜雷;垂直搜索引擎网络爬虫的研究与设计[D];北京邮电大学;2015年
2 陈尚卫;基于用户信任度的网络动态访问控制研究[D];南京航空航天大学;2010年
,本文编号:2493903
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2493903.html