稀疏子空间聚类算法及其在运动分割中的应用研究
文内图片:
图片说明:无向图G
[Abstract]:Nowadays, people are not satisfied with just playing multimedia information, but turn to video object-based access, retrieval and operation, so video-based motion segmentation technology has become the focus of research. Motion segmentation is the cornerstone of object coding, video retrieval and multimedia interaction, which separates objects with different motion in video. The traditional motion segmentation algorithm adopts moving target detection and target tracking. When using frame difference method and optical flow method to detect moving target, it is easy to be affected by noise. Target tracking also involves the occlusion, distortion and deformation of the target, so it is difficult to get the ideal effect of motion segmentation in complex scene. From the point of view of the problem, sparse subspace clustering algorithm is used to avoid the problems encountered in motion detection and target tracking, so as to realize the motion segmentation in complex scenes. The feature point trajectory based on the same motion is on the same linear manifold, so the sparse subspace clustering algorithm can be used to cluster the feature point trajectory to realize motion segmentation. When dealing with high-dimensional data, sparse subspace clustering algorithm can segment high-dimensional data into its own low-dimensional subspace, reveal the local proton space of high-dimensional data, and the algorithm can deal with the influence of singularity and noise on clustering at the same time. aiming at the research of sparse subspace algorithm, this paper does the following work: (1) by comparing k-means algorithm, the adaptive spectral clustering algorithm is deeply studied. Because the sparse subspace clustering algorithm is based on spectral clustering, the related basic and theoretical knowledge of spectral clustering is deeply studied, and the research results and application status of spectral clustering are analyzed. Aiming at the disadvantage that spectral clustering needs to manually input the number of clustering, this paper calculates the characteristic gap of matrix according to the perturbation theory of matrix, so as to realize the automatic determination of clustering number by clustering algorithm. In order to prove that spectral clustering algorithm can deal with arbitrary sample shape data sets, and does not fall into local optimization, this paper selects various shapes of sample sets to carry out experiments, and uses k-means algorithm to deal with these sample sets. Through experimental comparison, the advantages of adaptive spectral clustering algorithm in dealing with sample sets are found. (2) mixed least square regression sparse subspace clustering algorithm is proposed. In order to solve the problem of how to construct the similarity matrix which truly and reasonably reflects the dataset, the similarity matrix should be sparse between classes and uniform within classes, so as to ensure that the similarity of data points belonging to the same class is the largest and the similarity of data points belonging to different classes is the smallest. For the sample set, there are all kinds of noise points, singular sample points and isolated points. In this paper, the data item matrix is used to deal with the influence of noise. By analyzing the sparse subspace clustering, it focuses on the maximum sparsity of each data representation coefficient, and lacks the description of the global structure of the data set. The low rank subspace clustering algorithm ensures the structural correlation of the same kind of data, but it is not sparse enough. In this paper, we decide to introduce least square regression into sparse subspace clustering algorithm, so as to ensure that the similarity matrix of data has both sparsity and grouping effect, and the performance of the improved algorithm is verified by data set. (3) the application of improved sparse subspace clustering algorithm in motion segmentation is studied. The sparse subspace clustering algorithm is applied to video object processing, and the motion segmentation model is established and the motion segmentation experiment is carried out. the experimental results show that the improved algorithm improves the accuracy of motion segmentation under the condition of ensuring the time complexity.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP311.13
【参考文献】
相关期刊论文 前10条
1 杨欢;刘小玲;;虚拟现实系统综述[J];软件导刊;2016年04期
2 刘建华;;基于隐空间的低秩稀疏子空间聚类[J];西北师范大学学报(自然科学版);2015年03期
3 王卫卫;李小平;冯象初;王斯琪;;稀疏子空间聚类综述[J];自动化学报;2015年08期
4 许凯;吴小俊;;基于重建系数的子空间聚类融合算法[J];计算机应用研究;2015年11期
5 贾瑷玮;;基于划分的聚类算法研究综述[J];电子设计工程;2014年23期
6 欧阳佩佩;赵志刚;刘桂峰;;一种改进的稀疏子空间聚类算法[J];青岛大学学报(自然科学版);2014年03期
7 姚刚;杨敏;;稀疏子空间聚类的惩罚参数自调整交替方向法[J];计算机技术与发展;2014年11期
8 高文;朱明;贺柏根;吴笑天;;目标跟踪技术综述[J];中国光学;2014年03期
9 张权;胡玉兰;;谱聚类图像分割算法研究[J];沈阳理工大学学报;2012年06期
10 王骏;王士同;邓赵红;;聚类分析研究中的若干问题[J];控制与决策;2012年03期
相关博士学位论文 前2条
1 陈黎飞;高维数据的聚类方法研究与应用[D];厦门大学;2008年
2 姜志侠;数学规划中的原始对偶内点方法[D];吉林大学;2008年
相关硕士学位论文 前10条
1 谢浪雄;稀疏表示理论及其应用研究[D];广东工业大学;2015年
2 杨阳;数据挖掘K-means聚类算法的研究[D];湖南师范大学;2015年
3 管春苗;基于机器视觉的运动目标轨迹跟踪技术研究[D];沈阳理工大学;2015年
4 周成举;基于约束稀疏表达的视频人脸聚类[D];天津大学;2014年
5 王云峰;视频对象分割技术研究[D];广东工业大学;2014年
6 张亚平;谱聚类算法及其应用研究[D];中北大学;2014年
7 陆洪涛;偏最小二乘回归数学模型及其算法研究[D];华北电力大学;2014年
8 黎蕾;求解凸最优化问题的近似交替方向法[D];重庆师范大学;2013年
9 万海霞;图与混合图的特征值问题研究[D];郑州大学;2013年
10 罗怀金;基于近邻路径的自适应尺度谱聚类算法研究[D];哈尔滨工程大学;2012年
,本文编号:2511109
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2511109.html