基于深度交叉CNN和免交互GrabCut的显著性检测
发布时间:2019-08-14 14:59
【摘要】:针对传统显著性检测算法特征学习不足,显著性区域边界不明确和检测效果鲁棒性较差等问题,提出一种基于深度交叉卷积神经网络和免交互Grab Cut的显著性检测算法。该方法首先针对传统CNN模型中神经元和参数规模较大导致训练困难的不足,根据人眼视觉原理,构建深度交叉卷积神经网络模型(DCCNN);然后,采用超像素聚类方法获取图像区域特征,并通过Beltrami滤波突出图像内的边界特征,利用DCCNN对特征进行学习,在联合条件随机场框架下完成特征融合,实现显著性区域粗糙检测;最后,对粗糙检测结果自适应二值化和形态学膨胀,将显著区域的多边形逼近结果作为Grab Cut算法的输入,完成显著性区域的精确检测。实验结果表明所提算法能够有效提高显著性检测精度,具有更好的鲁棒性和普适性。
【图文】:
噘,
本文编号:2526631
【图文】:
噘,
本文编号:2526631
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2526631.html