平行坐标中的边捆绑算法
【图文】:
这些交互操作被认为是非常有用的,在大多数可视化实现中通常将交互技术和其他技术结合使用.2本文方法概述本文设计了一个边捆绑算法以解决传统平行坐标视觉混淆问题和现有边捆绑平行坐标法在连接端的混叠区域不能准确表达数据量大小以及丢失视觉连续性等问题.2.1属性轴数据聚类与大多数边捆绑方法一样,本文首先使用聚类方法对属性轴上的数据点进行单独聚类.本文中使用了K-means聚类算法[16]来对每个属性轴上的数据点进行聚类,当然也可以使用其他的聚类算法,如K-means++或高斯核密度等来对数据点进行聚类.如图1中以Cars数据集的(milespergallon,MPG)属性为例来表示聚类前后的对比.图1当k=3时Cars数据集MPG属性轴上的数据点聚类前后对比由于不同数据集的分布特征不同,在对每个轴上的数据聚类时根据数据的具体分布选择一个合适的k值.在聚类完成后,需要对数据进行分组.首先设置一个基准轴,然后根据基准轴的聚类结果对数据进行分组.由于大多数人的阅读习惯为从左到右,因此通常将从左向右第一个属性轴设置为基准轴以保持视觉上的协调.假设聚类之后,基准轴上的数据点被分为k个群集,则将所有的数据分为k组,基准轴对应的属性值属于同一个群集的数据为一组.之后分别为这k组数据构建连接关系并独立渲染这些分组以便观察每组的数据特征.这样可以观察基准轴对应维度上的数据在其他维度上的分布特征.如果需要观察其他维度上的数据分布,则只需要将其设置为基准轴即可.本文使用K-means聚类算法是因为其算法在对大量数据聚类时更高效,并且可伸缩.2.2构建连接关系在渲染每个分组前首先要为其构建连接关系.如图2所示,以3个属性轴A,B和C为例,假设属性轴A被设置为基准轴.首先为每个属性轴添加一个或2个虚拟轴(属性轴为最左或最右
1238计算机辅助设计与图形学学报第29卷图2群集CA1所为在分组形成的连接关系示意图群集或连接关系的区间大小,即()MWnnN(2)其中,W(n)表示包含数据量为n的群集或连接关系应分配的区间大小,M表示自定义的最大区间大小,N表示所有群集或连接关系中包含的数据量的最大值.在图2中使用W(C(CA1))和W(C(R2))分别表示群集CA1和连接关系R2对应的区间,C(R1)表示连接关系R1中所包含的数据量,W(C(R1))表示应为连接关系R1分配的区间大小.应注意W(C(R2))不一定等于W(C(CB2)),因为群集CB2中的数据不一定都与CA1相关联.然后将所有的群集映射到对应的虚拟轴上,映射区域中心与群集中心相对应,如图2中CA1与C’A1对应,映射区域的区间大小根据式(2)中的比例尺获取.从基准轴上的群集开始依次将有数据关系的群集连接起来并统计数据量,相邻的2个属性轴之间就形成若干个连接关系,如图2中以CA1群集为分组起始点共产生6个连接关系R1~R6,并且根据式(2)得到每个连接关系应分配的区间大小.连接关系并不直接与属性轴上的群集相连,而是与属性轴上群集对应的虚拟轴上的映射区域连接.这是因为将在虚拟轴和属性轴之间构建分支结构,分支结构将会在2.3中详细介绍.根据式(2)为不同的连接关系分配不同的区间后,不同关系的连接会存在相交的情况,如图3a所示R1和R2会相交.为了解决这个问题,本文在渲染之前对R1和R2的位置进行重新排序调整,以避免R1和R2的相交,如图3所示.在对连接关系进行调整时,本文算法仅仅在虚拟轴上进行分组调整,并不对连接关系对应的属性值进行操作.这是由于大多数高维数据中有的属性为数值类型,并不能直接进行调换.在虚拟轴上的连接关系?
【参考文献】
相关期刊论文 前2条
1 徐永红;高直;金海龙;刘文远;;平行坐标原理与研究现状综述[J];燕山大学学报;2008年05期
2 杨珂;罗琼;石教英;;平行散点图:基于GPU的可视化分析方法[J];计算机辅助设计与图形学学报;2008年09期
【共引文献】
相关期刊论文 前10条
1 秦红星;卫学仕;;平行坐标中的边捆绑算法[J];计算机辅助设计与图形学学报;2017年07期
2 张桂鑫;田文德;靳满满;;基于PCA权重的化工报警阈值优化[J];过程工程学报;2017年03期
3 陈晓慧;万刚;张伟;廖雨婷;李锋;;面向叙事结构的地理空间情报可视分析方法[J];测绘科学技术学报;2017年01期
4 杨路春;杨晨俊;汪志强;李学斌;;非可行解驱动进化算法和多元分析技术在船型参数优化中的应用[J];江苏科技大学学报(自然科学版);2017年02期
5 刘佳凝;庄惟敏;;基于多维数据分析的建筑空间预测研究[J];建筑学报;2016年S1期
6 李明昌;;近10年天津近岸海域水环境质量可视化分析与评价研究[J];水资源与水工程学报;2015年03期
7 杨锦忠;宋希云;;多元统计分析及其在烟草学中的应用[J];中国烟草学报;2014年05期
8 聂俊岚;田茂春;郭栋梁;张继凯;;交互式平行坐标多维电磁态势可视分析[J];燕山大学学报;2013年06期
9 谢妮;雷德龙;;基于平行坐标的多维数据交互可视化方法——以日晷晷影位置数据为例[J];福建电脑;2013年11期
10 张凯;谢庆华;;K均值算法影响因素的可视化分析[J];山西电子技术;2013年03期
【二级参考文献】
相关期刊论文 前2条
1 曹锋;周傲英;;基于图形处理器的数据流快速聚类[J];软件学报;2007年02期
2 吴恩华,柳有权;基于图形处理器(GPU)的通用计算[J];计算机辅助设计与图形学学报;2004年05期
【相似文献】
相关期刊论文 前10条
1 徐永红;高直;金海龙;刘文远;;平行坐标原理与研究现状综述[J];燕山大学学报;2008年05期
2 姚鑫;宣蕾;;基于平行坐标的网络安全态势可视化[J];信息安全与通信保密;2011年08期
3 路燕梅;;基于平行坐标的可视化多维数据挖掘的研究[J];现代计算机(专业版);2011年25期
4 周倜;王小非;冯力;彭茜;;改进平行坐标系框架下的多维电磁态势展现[J];华中科技大学学报(自然科学版);2013年01期
5 聂俊岚;田茂春;郭栋梁;张继凯;;交互式平行坐标多维电磁态势可视分析[J];燕山大学学报;2013年06期
6 邱全富;;非平行坐标系统图形的几种处理方式比较[J];江西化工;2013年04期
7 谭桂龙;陈谊;;基于平行坐标的信息可视化方法的应用研究[J];北京工商大学学报(自然科学版);2008年02期
8 徐永红;洪文学;高直;;基于平行坐标的贝叶斯可视化分类方法[J];计算机工程与应用;2008年25期
9 赵勇;洪文学;徐永红;;基于相位同步指数的运动想象脑电平行坐标可视化分类[J];燕山大学学报;2010年02期
10 胡俊;黄厚宽;高芳;;一种基于平行坐标的度量模型及其应用[J];计算机研究与发展;2011年02期
相关会议论文 前4条
1 崔建新;洪文学;高海波;徐永红;;基于平行坐标图的主成分分析优化研究[A];2007'中国仪器仪表与测控技术交流大会论文集(二)[C];2007年
2 韩博;;平行坐标可视化技术及其在约束数据挖掘中的应用[A];2007'全国测绘科技信息交流会暨信息网成立30周年庆典论文集[C];2007年
3 韩博;;平行坐标可视化技术及其在约束数据挖掘中的应用[A];全国测绘科技信息网中南分网第二十一次学术信息交流会论文集[C];2007年
4 徐永红;洪文学;陈娜;李昕;刘文远;关新平;张涛;;平行分类器:基于平行坐标和多元数据分析的可视化分类器[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年
相关硕士学位论文 前10条
1 刘亚璇;基于平行坐标和数据挖掘的P2P借贷金融数据可视化研究[D];天津大学;2014年
2 杨豪斌;基于聚类的边绑定算法研究[D];深圳大学;2016年
3 姚鑫;基于平行坐标的网络安全态势地图[D];国防科学技术大学;2011年
4 孟攀飞;基于平行坐标的可视化交互分类[D];华南理工大学;2010年
5 刘益萌;基于平行坐标主维度的多变量体数据可视化方法研究[D];燕山大学;2015年
6 高芳;平行坐标可视化技术的度量模型研究[D];北京交通大学;2009年
7 叶苏南;基于平行坐标的聚类过程可视化的研究与实现[D];华南理工大学;2010年
8 张正海;城市空气质量数据可视化及预测方法的研究[D];山东大学;2012年
9 荆杰;面向平行坐标的运动捕获人体动画研究[D];华中科技大学;2012年
10 翟旭君;基于平行坐标的可视化数据挖掘技术研究[D];清华大学;2005年
,本文编号:2580297
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2580297.html