基于RGB-D的运动目标鲁棒跟踪算法研究
发布时间:2021-01-17 11:59
目标跟踪是指在视频序列中自动跟踪感兴趣的区域并输出其在每一帧中的位置和状态。目前,目标跟踪的难点主要包括复杂背景下的目标提取、目标的自遮挡、相互遮挡、阴影的处理、多摄像机的数据融合、对目标跟踪的实时性要求等。尤其是遮挡和阴影,这些问题普遍存在于现实环境中,同时由于目标外观及光照的改变,导致在跟踪过程中发生跟踪漂移、丢失等现象,很大程度地影响目标跟踪算法的准确性和鲁棒性。彩色图像包含丰富的颜色、梯度、纹理和空间等信息,有利于图像处理,但彩色图像往往受限于光照变化、遮挡及复杂背景等,在跟踪领域中难以得到优秀的鲁棒性。深度图像是指将场景中各点相对于图像采集设备的距离作为像素值的图像,不受光源照射方向、物体表面发射特性和阴影的影响,恰恰解决了基于彩色图像的目标跟踪常受光照、阴影和复杂背景影响的问题。本论文针对于深度图像不受光照、阴影影响的特点,提出了一个基于粒子滤波框架的多候选种子融合的头部跟踪算法。在仅依赖深度信息的前提下,预处理图像以丰富细节信息,利用深度信息估计人的移动范围,逐帧融合并更新目标模板,分别以二阶头部搜索策略和粒子滤波为运动模型,结合提早中断模板更新策略,对于在深度图像中被跟...
【文章来源】:山东大学山东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:69 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
符号说明
第一章 绪论
1.1 研究背景与意义
1.2 国内外研究现状综述
1.2.1 经典目标跟踪的研究现状
1.2.2 基于RGB-D的目标跟踪研究现状
1.3 主要研究内容
1.4 论文章节安排
第二章 目标跟踪相关理论介绍
2.1 目标跟踪基础理论
2.1.1 目标跟踪的框架
2.1.2 评价目标跟踪算法的准则
2.1.3 目前的基准数据集
2.2 深度图像的特点及获取
2.2.1 深度图像的特点
2.2.2 深度图像提取设备Kinect
2.3 粒子滤波算法概述
2.4 感知哈希算法概述
2.5 本章小结
第三章 基于深度图像的多候选种子融合的头部跟踪算法
3.1 深度图像的预处理
3.2 跟踪模板更新方法
3.2.1 候选种子位置的生成
3.2.2 基于多候选种子融合的模板更新
3.3 二阶头部搜索策略
3.4 跟踪结果与分析
3.4.1 最优参数选择方法
3.4.2 跟踪结果分析
3.5 基于粒子滤波的深度图像跟踪算法改进
3.5.1 基于粒子滤波的搜索策略
3.5.2 跟踪结果分析
3.6 本章小结
第四章 基于RGB-D的尺度自适应跟踪算法
4.1 核相关滤波器跟踪算法
4.1.1 核相关滤波器算法介绍
4.1.2 基于尺度变换的改进现状
4.2 基于RGB-D的尺度自适应跟踪算法
4.2.1 尺度自适应变换机制
4.2.2 多模态特征融合方法
4.2.3 跟踪丢失自适应融合判决机制
4.3 跟踪结果分析
4.4 本章小结
第五章 总结与展望
5.1 总结
5.2 未解决的问题和以后工作展望
参考文献
致谢
攻读学位期间发表的学术论文目录
学位论文评阅及答辩情况表
【参考文献】:
期刊论文
[1]基于分水岭变换的粘连颗粒图像分割方法[J]. 倪志强,叶明. 计算机系统应用. 2014(06)
[2]动态场景下的运动目标跟踪方法研究[J]. 邵文坤,黄爱民,韦庆. 计算机仿真. 2006(05)
[3]视觉跟踪技术综述[J]. 侯志强,韩崇昭. 自动化学报. 2006(04)
硕士论文
[1]基于感知哈希的图像认证算法研究[D]. 王亚男.哈尔滨工业大学 2009
[2]深度图像的获取及其处理[D]. 周颖.西安电子科技大学 2008
本文编号:2982840
【文章来源】:山东大学山东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:69 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
符号说明
第一章 绪论
1.1 研究背景与意义
1.2 国内外研究现状综述
1.2.1 经典目标跟踪的研究现状
1.2.2 基于RGB-D的目标跟踪研究现状
1.3 主要研究内容
1.4 论文章节安排
第二章 目标跟踪相关理论介绍
2.1 目标跟踪基础理论
2.1.1 目标跟踪的框架
2.1.2 评价目标跟踪算法的准则
2.1.3 目前的基准数据集
2.2 深度图像的特点及获取
2.2.1 深度图像的特点
2.2.2 深度图像提取设备Kinect
2.3 粒子滤波算法概述
2.4 感知哈希算法概述
2.5 本章小结
第三章 基于深度图像的多候选种子融合的头部跟踪算法
3.1 深度图像的预处理
3.2 跟踪模板更新方法
3.2.1 候选种子位置的生成
3.2.2 基于多候选种子融合的模板更新
3.3 二阶头部搜索策略
3.4 跟踪结果与分析
3.4.1 最优参数选择方法
3.4.2 跟踪结果分析
3.5 基于粒子滤波的深度图像跟踪算法改进
3.5.1 基于粒子滤波的搜索策略
3.5.2 跟踪结果分析
3.6 本章小结
第四章 基于RGB-D的尺度自适应跟踪算法
4.1 核相关滤波器跟踪算法
4.1.1 核相关滤波器算法介绍
4.1.2 基于尺度变换的改进现状
4.2 基于RGB-D的尺度自适应跟踪算法
4.2.1 尺度自适应变换机制
4.2.2 多模态特征融合方法
4.2.3 跟踪丢失自适应融合判决机制
4.3 跟踪结果分析
4.4 本章小结
第五章 总结与展望
5.1 总结
5.2 未解决的问题和以后工作展望
参考文献
致谢
攻读学位期间发表的学术论文目录
学位论文评阅及答辩情况表
【参考文献】:
期刊论文
[1]基于分水岭变换的粘连颗粒图像分割方法[J]. 倪志强,叶明. 计算机系统应用. 2014(06)
[2]动态场景下的运动目标跟踪方法研究[J]. 邵文坤,黄爱民,韦庆. 计算机仿真. 2006(05)
[3]视觉跟踪技术综述[J]. 侯志强,韩崇昭. 自动化学报. 2006(04)
硕士论文
[1]基于感知哈希的图像认证算法研究[D]. 王亚男.哈尔滨工业大学 2009
[2]深度图像的获取及其处理[D]. 周颖.西安电子科技大学 2008
本文编号:2982840
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/2982840.html