基于多特征融合的跨域情感分类模型研究
本文关键词:基于多特征融合的跨域情感分类模型研究
【摘要】:[目的 /意义]跨领域情感分类仍是亟需重点研究的问题之一。[方法 /过程]借助情感无关词,通过谱聚类算法构建源领域与目标领域的跨域情感特征词簇,将谱聚类得到的情感词特征与位置特征、关键词特征、词性特征融入逻辑回归分类算法中,实现基于多特征融合的跨领域情感分类算法;并以用户评论数据进行验证。[结果 /结论 ]研究结果表明,CDFF(Cross Domain pulse Four Factor)算法可有效实现跨域用户的情感分类,为跨领域情感分类研究提供借鉴。
【作者单位】: 浙江工商大学管理科学与电子商务学院;浙江工商大学现代商贸研究中心;浙江工商大学管理学院;
【关键词】: 跨域情感分类 多特征融合 谱聚类 迁移学习
【基金】:国家自然科学基金资助项目“电商环境下融入在线社会关系的消费信贷价值度量研究”(项目编号:71571162) 浙江省自然科学基金资助项目“融入物联情境的商业数据流挖掘模型及可靠性研究”(项目编号:LY14F020002)研究成果之一
【分类号】:TP391.1
【正文快照】: 1引言互联网用户的交互行为产生了大量评论数据,如客户购买某商品后的评论、微博用户针对热点话题的评论等。这些交互数据中隐含着用户对某类事物的情感倾向,它对构建用户兴趣模型、产生推荐结果具有重要实践意义。情感分类即根据评论数据将用户情感分为两类:积极和消极,虽然
【相似文献】
中国期刊全文数据库 前10条
1 初红霞;王科俊;王希凤;郭庆昌;韩晶;;多特征融合的退火粒子滤波目标跟踪[J];计算机工程与应用;2011年06期
2 顾鑫;王海涛;汪凌峰;王颖;陈如冰;潘春洪;;基于不确定性度量的多特征融合跟踪[J];自动化学报;2011年05期
3 姚红革;杜亚勤;;基于多模式多特征融合粒子滤波视频目标跟踪[J];西安工业大学学报;2012年11期
4 王兰;;基于多特征融合的票据分类技术及应用[J];计算机光盘软件与应用;2013年13期
5 陈增照;何秀玲;杨扬;董才林;;基于多特征融合的票据分类技术及应用[J];计算机工程与应用;2006年09期
6 周斌;林喜荣;贾惠波;宋榕;;多特征融合的手背血管识别算法[J];清华大学学报(自然科学版);2007年02期
7 刘贵喜;范春宇;高恩克;;基于粒子滤波与多特征融合的视频目标跟踪[J];光电子.激光;2007年09期
8 胡全;邱兆文;王霓虹;;基于多特征融合的图像语义标注[J];东北林业大学学报;2008年10期
9 周静;黄心汉;彭刚;;基于多特征融合的飞机目标识别[J];华中科技大学学报(自然科学版);2009年01期
10 沈才梁;许雪贵;许方恒;龙丹;;多特征融合的人脸检测[J];计算机系统应用;2009年11期
中国重要会议论文全文数据库 前3条
1 叶锋;蔡光东;郑子华;亓晓旭;尹鹏;;基于多特征融合的药用植物标本识别[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
2 段其昌;季长有;;基于多特征融合的快速人脸检测[A];第十七届全国测控计量仪器仪表学术年会(MCMI'2007)论文集(上册)[C];2007年
3 李玉峰;郑德权;赵铁军;;基于SVM和多特征融合的图像分类[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
中国博士学位论文全文数据库 前5条
1 刘明华;复杂环境下基于多特征融合的目标跟踪关键技术研究[D];青岛科技大学;2016年
2 田纲;基于多特征融合的Mean shift目标跟踪技术研究[D];武汉大学;2011年
3 徐志刚;基于多特征融合的路面破损图像自动识别技术研究[D];长安大学;2012年
4 陈秀新;多特征融合视频复制检测关键技术研究[D];北京工业大学;2013年
5 初红霞;基于均值移动和粒子滤波的目标跟踪关键技术研究[D];哈尔滨工程大学;2012年
中国硕士学位论文全文数据库 前10条
1 张岩;基于多特征融合及二部图匹配的3D目标检索技术研究[D];哈尔滨工业大学;2015年
2 计明明;基于多特征融合的三维模型检索技术[D];浙江大学;2015年
3 王庆;基于多特征融合的人体动作识别方法研究[D];上海大学;2015年
4 刘婕;复杂场景多特征融合粒子滤波目标跟踪[D];重庆理工大学;2015年
5 崔剑;基于多特征融合的分级行人检测方法研究[D];电子科技大学;2015年
6 王珊珊;基于极化SAR非监督分类的油膜厚度估算方法研究[D];大连海事大学;2015年
7 肖冠;基于多特征融合的异类传感器中段目标关联算法研究[D];国防科学技术大学;2013年
8 王建荣;基于多特征融合的无人机航拍图像识别研究[D];成都理工大学;2015年
9 高爽;基于多特征融合的粒子滤波跟踪算法研究[D];西安电子科技大学;2014年
10 坎启娇;基于多特征融合的多目标跟踪算法[D];河北工业大学;2015年
,本文编号:606227
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/606227.html