基于复杂网络重叠社团发现的微博话题检测
发布时间:2017-10-06 02:28
本文关键词:基于复杂网络重叠社团发现的微博话题检测
【摘要】:社交媒体话题检测一直是个热点问题,由于社交数据杂乱异构,且具有时效性,语义模糊性等特点,话题检测也是个难点问题.研究利用复杂网络对社交文本数据进行建模,并结合一种基于极大团凝聚层次聚类的重叠社团发现方法实现了社交话题的检测.文本数据建模中,通过自定义突发系数量化话题词,即把话题词看作具有时域分布偏好的关键词,并通过自定义相关系数连接话题词,构建话题网络.为使自定义系数更适用于动态数据环境,实验结合真实数据进行了适应性测试优化系数.文章把采用EAGLE重叠社团发现方法在公开数据集上评测,根据Q函数值显示结果明显优于当前一些重叠社团发现策略,研究对采样的60万条青少年社交数据进行了话题分析并可视化了分析结果.
【作者单位】: 武汉大学计算机学院;贵州师范大学大数据与计算机科学学院;
【关键词】: 复杂网络 重叠社团发现 话题检测 青少年
【基金】:国家自然科学基金(61133012,61373108) 贵州省科技厅联合基金(黔科合J字LKS201237)
【分类号】:O157.5;TP391.1
【正文快照】: 1引言社交话题的检测一直是个热点问题,由于社交网络数据杂乱异构,数据常常具有时效性,突发性和模糊性等特点,加之中文语义切分歧义性等复杂特点,中文社交话题的检测一直是个难点问题[1].青少年作为社交网络的原住民,其社交生活极具影响力,因此也受到各方面的关注.社交网络对,
本文编号:980203
本文链接:https://www.wllwen.com/kejilunwen/ruanjiangongchenglunwen/980203.html