装配式钢框架—节能复合墙板结构体系的滞回性能研究
本文关键词:装配式钢框架—节能复合墙板结构体系的滞回性能研究 出处:《山东大学》2013年硕士论文 论文类型:学位论文
更多相关文章: 钢框架 节能复合墙板 滞回性能 试验研究 有限元分析
【摘要】:近年来,随着住宅产业化的推行,钢结构作为装配式住宅的优良结构形式,已被广泛应用于住宅建筑中。与钢框架结构配套的墙体材料的选用,也成为钢结构住宅推广应用的关键所在。在国家提倡绿色节能建筑等相关政策的引导下,新型节能复合墙体应运而生。这些墙体具有轻质高强、保温性能好等优点,能满足人们对安全、舒适、环保、节能等多功能的需求,是理想的节能建筑材料。国内外大量研究发现,墙板与钢框架通过一定的方式连接,当结构体系承受水平地震作用时,墙板和钢框架便作为一个整体共同抵抗水平力,墙板不仅对钢框架结构起到围护和分隔作用,同时在结构承受水平荷载作用时也参与了受力。墙板的存在加强了对钢框架梁、柱变形的限制,两者形成一种相互约束的结构体系,有效的提高了结构的抗侧承载力与抗侧刚度,也改善了结构的抗震性能。 目前对带有节能复合墙板钢框架的抗震性能研究还刚刚起步,加上复合墙板的种类众多,墙板与钢框架的连接形式也有所差异,研究成果远未达到成熟的阶段。本文结合住宅产业化与建筑节能的核心理念,提出了装配式节能建筑结构体系——“装配式钢框架—节能复合墙板结构体系”。主体框架采用钢结构形式,梁柱节点采用半刚性端板连接,节能复合墙板采用预制钢丝网架混凝土夹心板。墙板与钢框架的连接方式采用点挂式连接。 本文通过开展低周往复荷载试验,对该结构体系的滞回性能进行了深入研究,并利用大型通用有限元分析软件ABAQUS进行了数值模拟分析。最后结合试验与有限元分析的相关结论,给出了该结构体系的滞回性能参数及设计建议。所开展的主要工作和研究结论如下: (1)设计制作了6榀单层、单跨的缩尺模型试件,对其进行了低周反复加载试验。通过试验系统研究了该结构的破坏模式、滞回性能、刚度退化、变形及延性、耗能能力等。 (2)在试验的基础上,采用ABAQUS对该结构体系进行了建模与计算分析,提出了该结构体系的有限元模型,钢框架与墙板均采用三维壳单元,带钢板斜向支撑的墙板支撑部分采用复合材料层模拟,梁柱端板连接及墙板与钢框架的连接均采用弹簧单元。并进行了对比验证分析与相关参数分析。 (3)试验研究结果表明:该结构具有良好的抗侧力性能与抗震性能,“先墙板,后框架”的破坏模式对结构抗震来说较为安全,且墙板的整体性能较好;带钢板斜向支撑的墙板能明显提高结构的承载能力和极限位移,其延性性能与耗能能力较好;陶粒混凝上墙板其“轻质高强”的特点有利于结构的抗震;墙板与钢框架梁柱连接的结构形式其抗震性能更加优越:该结构体系的初始刚度为空框架结构的2.2~2.9倍,结构延性系数较高,在3.23~4.54范围内,该结构的肯有良好的牦能性能(能量耗散系数E在0.65左右)。 (4)有限元研究结果表明:数值模拟应力应变云图以及结构的变形与试验结果较为一致,墙板要先于钢框架达到其材料的极限强度;数模拟与试验得到滞回曲线形式基本一致,两者的骨架曲线也吻合较好,误差在10%左右。墙板厚度对结构整体的抗侧刚度影响较小;墙板与钢框架相对“柔性”的连接方式,即可以提高结构的抗侧刚度,又能保证结构在较大水平位移时墙板仍有有效的承载能力。
[Abstract]:In recent years, with the development of housing industrialization, steel structure as a good kind of prefabricated structure, has been widely used in residential buildings. And the selection of wall materials of steel frame supporting, but also has become the key to the application of steel structure residence. In the country to promote green building policy under the guidance of, a new energy-saving composite wall emerged. These walls have high strength, good insulation performance and other advantages, can satisfy the safety, comfort, environmental protection, energy saving and other functional requirements, is the ideal energy-saving building materials. A large number of domestic and foreign research, wall panels and steel frame connected in a certain way, when the structure withstand level earthquake, wall panels and steel frame as a whole the level of resistance force, not only to the wall surrounding and separating effect of steel frame structure, while the structure under horizontal load When loading is applied, it also takes part in the force. The existence of wall panels strengthens the restriction on the deformation of steel frame beams and columns. They form a mutually constrained structural system, which effectively improves the lateral bearing capacity and lateral stiffness of the structure, and also improves the seismic performance of the structure.
The current research on seismic performance of steel frame with energy-saving composite panels has just started, with diverse types of composite panel, connection panel and steel frame are also different, research results are far from mature. Combining with the core concept of residential industrialization and building energy-saving, proposed assembled energy-saving building structure system "the assembly type steel frame composite panel structure system. The main frame adopts steel structure, beam column joints with semi-rigid end plate connection, energy-saving composite wall with precast concrete sandwich plate of steel wire net. Connection panel and steel frame adopts hanging type connection.
This paper through the low cyclic loading test, the structural hysteretic behavior is studied, and using the finite element analysis software ABAQUS numerical simulation analysis is carried out. Combined with the results of experiment and finite element analysis, the structure of the hysteretic performance parameters and design suggestions. Conclusion the main work and research are as follows:
(1) 6 pieces of single story and single span scale model specimens were designed and manufactured for low cyclic loading test. The failure mode, hysteretic behavior, stiffness degradation, deformation and ductility, energy dissipation capacity of the structure were studied through test system.
(2) on the basis of the experiment, ABAQUS is used to modeling and analysis of the structure of the system, put forward the system structure of the finite element model of steel frame and wall adopts three-dimensional shell element, steel plate with oblique wall supporting part supported by composite material layer simulation, connecting beam column end plate connections and siding with the steel frame using spring element. Analyzed and compared the verification and analysis of the relevant parameters.
(3) the experimental results show that this structure has the lateral force resisting performance and good anti-seismic performance, "the first wall failure mode after the framework of seismic safety for more, and better overall performance of wall plate; the inclined support plates can significantly improve the bearing capacity and ultimate displacement of the structure. The ductility and energy dissipation capacity of ceramsite concrete wall is better; the" lightweight "features is conducive to structural seismic structure; slab and beam column connections of steel frame and its seismic performance is more superior: the initial stiffness of the structure system for space frame structure of 2.2 ~ 2.9 times higher ductility coefficient at 3.23 ~ 4.54 range, the structure would have good performance of Yak (energy dissipation coefficient E is about 0.65).
(4) the results show that the finite element numerical simulation of stress strain nephogram and deformation of the structure are consistent with the experimental results, the ultimate strength of the first wall in the steel frame to the material; the number of simulation and test hysteretic curve skeleton curve form is basically the same, both are also in good agreement with the error, smaller at around 10%. Effect of lateral wall thickness on the structure of the overall stiffness; wall and steel frame relative to "flexible" connections, which can improve the lateral stiffness of the structure, but also can ensure the structure wall in the larger horizontal displacement is carrying capacity effectively.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU398
【参考文献】
相关期刊论文 前10条
1 李国华;郁银泉;顾强;;钢框架内填混凝土墙结构体系有限元分析[J];四川建筑科学研究;2007年05期
2 刘钦;;基于优化原理的框架梁柱合理线刚度比研究[J];河南城建学院学报;2009年05期
3 李国强,赵欣,孙飞飞,高文利,杨尊权,靳世文;钢结构住宅体系墙板及墙板节点足尺模型振动台试验研究[J];地震工程与工程振动;2003年01期
4 李国强,方明霁,陆烨;钢结构建筑轻质砂加气混凝土墙体的抗震性能试验研究[J];地震工程与工程振动;2005年02期
5 于敬海;张刚;李久鹏;;外挂墙板对框架结构内力的影响分析[J];低温建筑技术;2011年08期
6 李迪;许红升;;某既有办公建筑节能改造后的能效模拟分析[J];建筑节能;2009年12期
7 周小军;;ABAQUS中弥散裂缝模型与损伤塑性模型的比较[J];福建建筑;2010年05期
8 彭晓彤;顾强;;钢框架内填钢筋混凝土剪力墙混合结构破坏机理及塑性分析[J];工程力学;2011年08期
9 李国强,王城;外挂式和内嵌式ALC墙板钢框架结构的滞回性能试验研究[J];钢结构;2005年01期
10 卜令全;夏军武;颜培松;侯智超;;内嵌墙板钢框架结构抗震性能研究[J];钢结构;2010年01期
相关博士学位论文 前2条
1 方有珍;半刚接钢框架(柱弱轴)—内填RC剪力墙结构的滞回性能[D];西安建筑科技大学;2006年
2 杭雷鸣;我国能源消费结构问题研究[D];上海交通大学;2007年
相关硕士学位论文 前1条
1 邱灿星;带复合墙板钢框架的滞回性能研究[D];山东大学;2011年
,本文编号:1419397
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1419397.html