南方湿热地区臭氧活性炭净水工艺水质安全性研究
本文关键词: 臭氧活性炭 微型生物 消毒副产物 AOC 炭滤池 砂滤池 出处:《华南理工大学》2013年硕士论文 论文类型:学位论文
【摘要】:常规净水工艺处理难以解决饮用水源的微污染问题,采用深度处理工艺,提供优质和安全的饮用水,以更好的与国际水质标准接轨已经成为我国供水行业的首要任务。臭氧活性炭(O_3-BAC)技术以其高效的去除污染物质能力已经逐渐得到推广和应用。然而,对于南方湿热地区来说,采用此种净水工艺,就活性炭工艺出水的生物安全性来讲,有许多等待解决和完善的问题。 本研究依托国家“十一五”水专项课题,针对南方湿热地区的水质特征,在南方某采用O_3-BAC工艺的水厂内进行。并通过建立中试试验系统对工艺流程进行改进研究。本文首先考察传统的后置O_3-BAC工艺的水质安全性,针对现有工艺存在的问题提出改善措施,提出中置O_3-BAC工艺并对此工艺进行优化研究。研究结果表明: (1)水厂采用的后置O_3-BAC工艺,对浊度、氨氮、CODMn值均有较好的去除效果,出水AOC含量低,消毒副产物也均未出现超标现象,炭滤池出水浊度略高于砂滤池,出水中的颗粒物可能携带细菌等,存在微型生物泄露的现象。通过改用四段式的反冲洗方式,后臭氧投加至出水余臭氧0.1mg/L,采用液氯与臭氧联合多点投加的方式进行全流程消毒等优化措施,出水水质安全性得到一定改善。 (2)中试系统采用中置O_3-BAC工艺,将炭滤池置于砂滤池之前,并对炭滤池进行曝气。出水数据显示,该工艺对有机物的去除率与水厂相当,加铵试验表明中试工艺对氨氮有更高的去除率。砂滤池后置能减少出水微型生物数量,但依然能检测到少量细菌和微型生物,且浊度虽满足标准,但略高于后置O_3-BAC工艺出水。通过二次絮凝控制浊度至0.1NTU以下,采用双层滤砂代替传统单层滤砂,根据具体水质情况选择合适的消毒方式,均有利于减少出水中的细菌、微型生物等。 (3)对于中置O_3-BAC工艺,预臭氧投加量宜控制在0.8mg/L以下,以防止氯酸盐超标,,臭氧联合氯消毒虽可解决微型生物泄漏问题,但是臭氧投加量超过1.0mg/L时,出水AOC大于100μg/L,对出水生物稳定性造成危害,建议在微型生物高发期(尤其是耐氯性微型生物),后臭氧投加量1.0mg/L以下,再在砂滤池后加氯辅助消毒。
[Abstract]:Conventional water purification process is difficult to solve the problem of micro-pollution of drinking water source. Advanced treatment process is used to provide high quality and safe drinking water. To better conform to the international water quality standards has become the first task of water supply industry in China. The technology of ozone activated carbon and O3-BAChas been gradually popularized and applied with its ability to remove pollutants efficiently. However, for the humid and hot areas in the south, In terms of biological safety of effluent from activated carbon process, there are many problems waiting to be solved and perfected. This research relies on the national "11th five-year plan" water special project, aiming at the water quality characteristic of the southern humid and hot area, The process was improved by establishing a pilot test system. Firstly, the water quality safety of the traditional post-stack O _ 3-BAC process was investigated in this paper, which was carried out in a water plant in the south of China using the O _ S _ 3-BAC process, and a pilot test system was set up to study the improvement of the process. In view of the problems existing in the existing process, the improvement measures are put forward, and the process of middle Ostack _ 3-BAC is put forward and optimized. The results show that:. 1) in the later O3-BAC process adopted by the water plant, the turbidity, ammonia nitrogen and COD _ (mn) values are all well removed, the AOC content in effluent is low, the disinfection by-products are not in excess of the standard, and the turbidity of the effluent from the carbon filter is slightly higher than that of the sand filter. Particulates in the effluent may carry bacteria and so on, resulting in microbiological leakage. By switching to a four-stage backwash, After ozone was added to the effluent, 0.1 mg / L of residual ozone was added to the effluent, and the safety of the effluent water quality was improved to some extent by using liquid chlorine and ozone in combination with multi-point addition to carry out the whole process disinfection and other optimization measures. (2) the pilot system adopts the O _ (3-BAC) process, which places the carbon filter in front of the sand filter and aerates the carbon filter. The effluent data show that the removal rate of organic matter by this process is comparable to that of the water plant. The ammonium addition test showed that the pilot-scale process had a higher removal rate of ammonia nitrogen. The amount of micro-organisms in effluent could be reduced after the sand filter was placed, but a small amount of bacteria and micro-organisms could still be detected, and the turbidity met the standard. But it is a little higher than that of the later OSCO _ 3-BAC process. By controlling turbidity below 0.1NTU by secondary flocculation, using double-layer sand filter instead of traditional single-layer sand filter, and selecting appropriate disinfection method according to specific water quality, it is beneficial to reduce the bacteria in the effluent. A microorganism, etc. (3) for the in-situ O _ 3-BAC process, the pre-ozone dosage should be controlled below 0.8 mg / L to prevent chlorate from exceeding the standard. Although ozone combined with chlorine disinfection can solve the problem of micro-biological leakage, when the ozone dosage exceeds 1.0 mg / L, The effluent AOC is more than 100 渭 g / L, which is harmful to the biological stability of the effluent. It is suggested that the ozone dosage be below 1.0 mg / L at the high occurrence stage of microorganism (especially chlorine-tolerant microorganism), and then chlorine be added to the sand filter to assist disinfection.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU991.2
【参考文献】
相关期刊论文 前10条
1 施东文;谢曙光;汪蕊;韩海燕;刘春霞;奚旦立;;常规/臭氧生物活性炭组合工艺处理受污染黄河水研究[J];北京大学学报(自然科学版)网络版(预印本);2006年03期
2 潘章斌;贾瑞宝;;臭氧-生物活性炭深度处理工艺的水质安全性研究进展[J];城镇供水;2010年02期
3 李薇;;饮用水深度处理技术现状及研究[J];工程建设与设计;2008年05期
4 吴强;梁伟杰;;BAC滤池微生物分布及生长状况的分析[J];供水技术;2007年04期
5 刘燕;姚智文;卢钢;李德生;王占生;李为兵;;O_3/BAC工艺中溴酸盐的控制[J];供水技术;2009年06期
6 姚宏,马放,李圭白,田盛,单景森;臭氧—生物活性炭工艺深度处理石化废水[J];中国给水排水;2003年06期
7 朱光灿,吕锡武;去除藻毒素的水处理技术研究进展[J];中国给水排水;2003年08期
8 刘建广,张晓健,王占生;生物活性炭滤池处理高氨氮原水[J];中国给水排水;2003年12期
9 乔铁军,刘晓飞,范洁,张金松;生物活性炭技术的安全性评价[J];中国给水排水;2004年02期
10 陆少鸣,朱争亮,杨立;臭氧—生物活性炭工艺处理含锰源水[J];中国给水排水;2004年06期
相关博士学位论文 前1条
1 韩晓刚;城市水源水质风险评价及应急处理方法研究[D];西安建筑科技大学;2011年
相关硕士学位论文 前2条
1 高欣;均质滤料微絮凝过滤处理微污染水源水的试验研究[D];长安大学;2006年
2 邵志昌;针对微型生物泄漏风险优化O3-BAC工艺研究[D];华南理工大学;2012年
本文编号:1532146
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1532146.html