喷涂混凝土夹心剪力墙抗震性能试验研究
发布时间:2018-03-21 02:35
本文选题:喷涂混凝土夹心墙 切入点:轴心受压 出处:《清华大学》2013年硕士论文 论文类型:学位论文
【摘要】:住宅产业化是我国住宅建设的发展方向,住宅产业化的一个重要方面是采用装配整体式工业化结构体系。夹模喷涂混凝土夹心剪力墙结构(也称为SW建筑体系)是一种新型工业化住宅体系,具有结构、保温、防火一体化的优点,符合我国节能减排的基本国策。SW建筑体系的主要承重及抗侧力构件为夹模喷涂混凝土夹心剪力墙(简称夹心墙)。为给夹心墙的设计提供依据,本文完成了4个夹心墙试件的轴心受压试验以及12个夹心墙试件在恒定竖向力和往复水平力作用下的拟静力试验,采用MSC. Marc (2010)对夹心墙进行了有限元分析,研究了参数对试件承载力及刚度的影响。 轴心受压试验结果表明:夹心墙试件的破坏形态为弯折破坏;夹心墙的轴心受压承载力可采用钢筋混凝土柱轴心受压承载力的公式进行计算;夹心墙的轴心受压承载力和轴向刚度随混凝土层厚度的增大而增大,而插丝间距则对夹心墙的轴心受压承载力和轴向刚度没有影响。 拟静力试验结果表明:试件的各层混凝土和边缘构件为一个整体,能共同抵抗竖向力和水平力,墙体和边缘构件间的竖缝连接可靠;在恒定竖向力和往复水平力作用下的夹心墙试件有压弯破坏、剪切破坏和弯剪破坏3种破坏模式;压弯破坏的试件,其极限位移角大于1/120,,弹塑性变形能力满足剪力墙结构抗震要求;剪切破坏或弯剪破坏的试件,其极限位移角小于1/120,弹塑性变形能力不满足剪力墙结构抗震要求;压弯破坏试件的耗能能力比剪切破坏和弯剪破坏试件的耗能能力大;压弯破坏试件,最外侧竖向钢筋受拉屈服时底截面竖向钢筋的应变分布符合平截面假定;试件在轴压力作用下的斜截面受剪承载力和正截面受弯承载力,可采用现行规范钢筋混凝土剪力墙承载力公式计算。 有限元分析及参数分析的结果表明:有限元的数值模拟结果与试验实测结果基本吻合;夹心墙的承载力和刚度随轴压比、混凝土强度及厚度的增大而增大;钢丝强度对夹心墙刚度基本无影响;钢丝网参与抗剪但不参与抗弯。本文还对8个不同剪跨比、设置钢筋网的夹心墙进行了有限元分析。结果表明:夹心墙均为压弯破坏;随剪跨比增大,夹心墙的承载力和刚度下降,峰值位移及位移角增大。 根据试验及有限元分析结果,提出了喷涂混凝土夹心墙应按强剪弱弯的原则设计等建议,可供实际工程设计参考。
[Abstract]:Housing industrialization is the development direction of housing construction in China. One of the important aspects of housing industrialization is to adopt the assembly integral industrial structure system. The sandwich shear wall structure (also known as SW building system) is a new type of industrial housing system with structure and insulation. The advantages of fire prevention integration are in line with the basic national policy of energy saving and emission reduction in our country. The main load-bearing and lateral force resisting components of the building system are the sandwich sprayed concrete sandwich shear wall (sandwich wall for short), which provides the basis for the design of the sandwich wall. In this paper, the axial compression test of four sandwich wall specimens and the pseudostatic test of 12 sandwich wall specimens under the action of constant vertical force and reciprocating horizontal force have been completed. The finite element analysis of the sandwich wall has been carried out by using Marc. The influence of the parameters on the bearing capacity and stiffness of the specimen was studied. The results of axial compression test show that the failure mode of sandwich wall is flexural failure, the axial compression capacity of sandwich wall can be calculated by the formula of axial compression capacity of reinforced concrete column. The axial compression capacity and axial stiffness of the sandwich wall increase with the increase of the thickness of the concrete layer, while the spacing of the intercalation wire has no effect on the axial compression capacity and the axial stiffness of the sandwich wall. The results of pseudostatic test show that the concrete and edge members of each layer of the specimen are a whole and can resist the vertical and horizontal forces together, and the vertical joint between the wall and the edge member is reliable. The sandwich wall specimens subjected to constant vertical force and reciprocating horizontal force have three failure modes: compression and bending failure, shear failure and bending shear failure. The ultimate displacement angle is more than 1 / 120, the elastic-plastic deformation ability meets the seismic requirements of shear wall structure, the ultimate displacement angle of shear failure or bending shear failure is less than 1 / 120, the elastoplastic deformation ability does not meet the seismic requirements of shear wall structure. The energy dissipation capacity of the compression and bending failure specimens is larger than that of the shear failure and shear failure specimens, and the strain distribution of the bottom cross section of the ultimate vertical steel bar is in accordance with the plane section assumption when the outermost vertical steel bar is subjected to tensile yield. The shear capacity of inclined section and flexural bearing capacity of normal section under axial pressure can be calculated by the formula of shear wall bearing capacity of reinforced concrete in current code. The results of finite element analysis and parameter analysis show that the numerical simulation results are in good agreement with the experimental results, and the bearing capacity and stiffness of the sandwich wall increase with the increase of axial compression ratio, strength and thickness of concrete. The steel wire strength has no effect on the stiffness of the sandwich wall; the wire mesh takes part in the shear resistance but does not participate in the bending resistance. The finite element analysis of 8 sandwich walls with different shear span ratio and steel mesh is carried out. The results show that the sandwich walls are all under compression and bending failure. With the increase of shear span ratio, the bearing capacity and stiffness of sandwich wall decrease, and the peak displacement and displacement angle increase. Based on the results of test and finite element analysis, it is suggested that the sandwich wall of sprayed concrete should be designed according to the principle of strong shear and weak bending, which can be used as a reference for practical engineering design.
【学位授予单位】:清华大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU352.11
【参考文献】
相关期刊论文 前10条
1 高榕;;国外住宅产业化描述[J];房地产导刊;2002年21期
2 朱恒杰;;ASA板镶嵌式集成节能建筑的创新点[J];城市住宅;2009年01期
3 连星;叶献国;王德才;蒋庆;常磊;;叠合板式剪力墙的抗震性能试验分析[J];合肥工业大学学报(自然科学版);2009年08期
4 左晓明;叶献国;杨启龙;;钢筋混凝土非线性有限元中剪力传递系数及其数值试验[J];建筑结构;2009年03期
5 王墩;吕西林;;预制混凝土剪力墙结构抗震性能研究进展[J];结构工程师;2010年06期
6 朱幼麟,刘寅生,陈芮,关启勋,寿光;装配式大板房屋模型在水平荷载作用下的试验研究[J];建筑结构学报;1980年02期
7 钱稼茹,吕文,方鄂华;基于位移延性的剪力墙抗震设计[J];建筑结构学报;1999年03期
8 梁兴文;杨鹏辉;崔晓玲;邓明科;张兴虎;;带端柱高强混凝土剪力墙抗震性能试验研究[J];建筑结构学报;2010年01期
9 俞雄;周强;;LIT复合混凝土轻质房屋体系概述[J];山西建筑;2011年20期
10 夏祖宏;刘思达;彭梅;毛建华;;加气混凝土板在建筑外墙中的应用[J];建设科技;2012年23期
本文编号:1641879
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1641879.html