钢管混凝土叠合柱结构弹塑性分析
发布时间:2018-03-22 22:06
本文选题:钢管混凝土叠合柱 切入点:剪力墙 出处:《大连理工大学》2013年硕士论文 论文类型:学位论文
【摘要】:钢管混凝土叠合柱结构,是我国自主开发的一种结构体系,其较钢筋混凝土柱和型钢混凝土柱具有更优良的抗压和抗震性能,具有更好的经济、社会效益。 当前国内外抗震设计的发展趋势是根据对结构在不同超越概率水平下的地震作用下的性能或变形要求进行设计,结构弹塑性时程分析成为抗震设计的一个必要的组成部分。 本文结合海创国际产业大厦项目这一钢管混凝土叠合柱超高层超限结构实际工程,运用结构弹塑性分析解决工程实际问题,进行了以下工作 (1)系统学习阐述了地震弹塑性分析的理论基础。明确地震弹塑性分析的主要目的,理解建筑结构地震弹塑性分析包括两个基本要素:1。建筑结构的弹塑性模型;2。地震作用的输入和计算。分析静力弹塑性分析的不足之处后,重点介绍动力弹塑性分析。 (2)介绍MIDAS BUILDING动力弹塑性分析。MIDAS BUILDING提供了剪力墙纤维模型,将剪力墙划分为一定数量的竖向和水平向纤维,采用了可以反映混凝土钢筋材料非线性和墙单元剪切特性的纤维本构关系;梁、柱铰特性值可根据计算配筋(考虑超配系数)或施工图的实配钢筋计算,这使得MIDAS BUILDING可以较为精确地反映工程实际的抗震性能。 (3)介绍钢管混凝土叠合柱结构及其设计概念。钢管混凝土叠合柱结构,是我国自主开发的一种结构体系。其较钢筋混凝土柱和型钢混凝土柱具有更优良的抗压和抗震性能,具有更好的经济、社会效益,在实际工程中得到越来越多地应用。 (4)将动力弹塑性应用在钢管混凝土叠合柱结构实际工程中。通过对超限超高层结构进行弹塑性分析,从而在找出结构薄弱部位的同时,对结构抗震性能进行评判。抗震性能主要通过对结构整体指标和构件性能两个方面来评判。结构整体评估指标包括结构顶点位移时程、弹塑性层间位移角等;构件性能评估指标包括研究塑性发展的区域、损伤程度,构件应力、应变等。
[Abstract]:Concrete-filled steel tubular composite column structure is a self-developed structural system in China. It has better compressive and seismic performance than reinforced concrete column and steel reinforced concrete column, and has better economic and social benefits. At present, the development trend of aseismic design at home and abroad is based on the performance or deformation requirements of structures under earthquake action with different transcendental probability levels. The elastoplastic time-history analysis of structures becomes an essential part of seismic design. In this paper, considering the practical project of Seicang International Industrial Building, which is a concrete filled steel tube superstructure, the elastoplastic analysis of the structure is used to solve the practical problems, and the following works are carried out. 1) the theoretical basis of seismic elastic-plastic analysis is studied systematically. The main purpose of seismic elastic-plastic analysis is defined. It is understood that the seismic elastoplastic analysis of building structures consists of two basic elements: 1. The elastoplastic model of building structures. 2. The input and calculation of seismic action. After analyzing the shortcomings of static elastoplastic analysis, the dynamic elastoplastic analysis is emphatically introduced. This paper introduces the dynamic elastoplastic analysis of MIDAS BUILDING. Midas BUILDING provides the fiber model of shear wall. The shear wall is divided into a certain number of vertical and horizontal fibers. The fiber constitutive relation, which can reflect the material nonlinearity of concrete reinforcement and shear characteristics of wall element, is adopted, and the characteristic value of beam and column hinge can be calculated according to the calculation of reinforcement (considering overmatch coefficient) or the actual reinforced bar of construction drawing. This makes MIDAS BUILDING more accurate to reflect the actual seismic performance of the project. This paper introduces the structure of concrete-filled steel tubular composite column and its design concept. The structure of concrete filled steel tubular column is a kind of structure system developed independently in our country. It has better compressive and seismic performance than reinforced concrete column and steel reinforced concrete column. It has better economic and social benefits, and has been applied more and more in practical projects. The dynamic elastoplasticity is applied to concrete filled steel tube superimposed column structure engineering. Through the elastic-plastic analysis of the super-tall structure, the weak part of the structure can be found at the same time. The seismic performance of the structure is evaluated by two aspects: the whole structure index and the member performance. The structural evaluation index includes the displacement time history of the structure vertex, the displacement angle between the elastic-plastic layer and so on. The performance evaluation index includes the region of plastic development, damage degree, stress and strain.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU398.9;TU313
【参考文献】
相关期刊论文 前10条
1 周文峰;鲁瑛;阳霞;;几种有代表性的约束混凝土滞回模型[J];四川建筑科学研究;2007年05期
2 杜颂;;包辛格效应对板材拉弯回弹的影响[J];北京航空航天大学学报;2007年02期
3 孟焕陵;沈蒲生;;基于刚度退化的框-剪结构受力性能研究[J];铁道科学与工程学报;2006年01期
4 汪梦甫;汪帜辉;刘飞飞;;增量动力弹塑性分析方法的改进及其应用[J];地震工程与工程振动;2012年01期
5 李坤;侯春娇;田兴运;卢雪清;;剪力墙弹塑性有限元模型与建模方法[J];水利与建筑工程学报;2011年02期
6 唐九如;;钢筋混凝土框架节点抗震研究的新进展[J];工程抗震;1989年04期
7 尹华伟,汪梦甫,周锡元;结构静力弹塑性分析方法的研究和改进[J];工程力学;2003年04期
8 黄宗明,陈滔;基于有限单元柔度法和刚度法的非线性梁柱单元比较研究[J];工程力学;2003年05期
9 陈滔,黄宗明;基于有限单元柔度法和刚度法的几何非线性空间梁柱单元比较研究[J];工程力学;2005年03期
10 赵永峰;童根树;;双折线弹塑性滞回模型的结构影响系数[J];工程力学;2008年01期
相关会议论文 前1条
1 关振启;吴建海;;抗震结构静力弹塑性分析的方法及步骤[A];土木建筑学术文库(第15卷)[C];2011年
,本文编号:1650591
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1650591.html