大规模压气储能洞室稳定性和洞周应变分析
发布时间:2018-06-11 10:04
本文选题:压气储能 + 硬岩洞室 ; 参考:《岩土力学》2014年05期
【摘要】:地下储气构造物是压气储能(CAES)电站选址的决定因素,其中人工开挖的硬岩洞室因其受地质构造限制小、适应范围广而备受关注。针对压气储能地下洞室方案选型和密闭性要求,选择了典型的洞室埋深(200、300、500 m),考虑不同的洞室形式(隧道式和大罐式)和洞室尺寸,采用Abaqus有限元软件计算出高内气压下压气储能洞室围岩的塑性区和洞周应变。通过分析开挖后和充气后两个工况下围岩的受力和变形特征,获得合适的洞室形式。当围岩级别为Ⅱ级、内压为10 MPa的情况下,埋深为300 m的圆形洞室和大罐式洞室稳定性较好,该埋深下6 m直径圆形洞室最大洞周应变为7.55410??,容积为5 310 m大罐式洞室最大洞周应变为5.54410??,以上值都在一般橡胶类高分子密封材料的正常工作范围内,这为密封材料在不同温度下的延伸率和耐久性研究提供了基础数据。
[Abstract]:Underground gas storage structure is the decisive factor in the location of pressurized gas storage energy storage (CAESs) power station. Among them, the hard cave chamber which is excavated by hand has attracted much attention because of its small limitation of geological structure and wide scope of adaptation. In view of the selection of underground chamber for pressurized gas energy storage and the requirements for its sealing, the typical underground chamber depth of 200300500 mm2 is selected, and different types of cavern (tunnel type and large tank type) and the size of cavern are considered. Abaqus finite element software is used to calculate the plastic zone and surrounding strain of the surrounding rock of the gas storage chamber under high pressure. By analyzing the stress and deformation characteristics of surrounding rock after excavation and aeration, a suitable cavity form is obtained. When the surrounding rock grade is grade 鈪,
本文编号:2004862
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2004862.html