EM算法及其在变形监测数据处理中的应用
[Abstract]:In order to ensure the safety of construction, it is necessary to monitor it systematically. Through monitoring and using the observation data, the deformation characteristics and the development law of the building are analyzed and grasped, and the trend of deformation is predicted and analyzed. Because of the existence of various influence factors, such as human beings and instruments, the missing observation data or the error or abnormal error in the observation value lead to the incomplete result of measurement data. But when the missing observation value is necessary for data processing, it is necessary to process the missing data, so that the quality of missing measurement data processing can be improved effectively, and the accuracy and reliability of measurement can be further improved. According to the principle of EM algorithm, taking the monitoring data of pile top settlement in urban deep foundation pit engineering as the research object, this paper carries out the research of fitting and forecasting the missing monitoring data. The main research work is as follows: 1. This paper summarizes the methods commonly used in measurement data processing, and analyzes the applicable conditions, advantages and disadvantages of these methods by comparing various incomplete measurement data processing methods. This paper introduces the basic principle and nature of EM algorithm, analyzes the missing mechanism and pattern of data, determines the pattern of data research in this paper, and finally gives the basis for judging the effect of data processing. Combining EM algorithm with Chebyshev polynomial regression analysis method in incomplete measurement data processing, the realization steps of EM algorithm based polynomial regression analysis in measurement data processing are studied and discussed, and the formula derivation is given. In order to realize the incomplete measurement data processing based on EM algorithm. 4. The exponential smoothing method and BP neural network model method are used to predict the measured settlement data respectively. Comparing the results of EM algorithm, it is found that the whole prediction accuracy of EM algorithm is the highest. It shows that EM algorithm is reasonable and feasible in incomplete measurement data processing.
【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU196.1
【参考文献】
相关期刊论文 前10条
1 李涛;任建喜;毛巨省;;城市地铁车站深基坑施工监测方案设计研究[J];地下空间与工程学报;2007年S2期
2 节斌;综合运用非线性回归和时间序列分析研究边坡变形[J];测绘科学;2003年03期
3 郭金运,靳奉祥,刘国林;不完全测量数据的应用研究[J];测绘通报;2002年02期
4 胡国荣,欧吉坤;改进的高动态GPS定位自适应卡尔曼滤波方法[J];测绘学报;1999年04期
5 钟萍;丁晓利;郑大伟;陈武;徐幼麟;;GPS结构振动监测数据滤波方法及其性能实验研究[J];测绘学报;2007年01期
6 周晓贤,吴中如;大坝安全监控模型中灰参数的识别[J];水电自动化与大坝监测;2002年01期
7 林东方;宋迎春;金昊;;不完全测量数据的EM处理算法[J];大地测量与地球动力学;2011年04期
8 徐曼;乔颖;鲁宗相;;短期风电功率预测误差综合评价方法[J];电力系统自动化;2011年12期
9 赵红新;;隧道量测数据的回归分析[J];福建建筑;2008年04期
10 毛健;赵红东;姚婧婧;;人工神经网络的发展及应用[J];电子设计工程;2011年24期
相关硕士学位论文 前10条
1 惠沈盈;观测数据不完全的动态定位算法研究[D];中南大学;2011年
2 李磊;地基沉降预测方法分析[D];浙江大学;2004年
3 叶斌;变形模型的分析研究以及变形的预测[D];同济大学;2006年
4 彭广亮;变形监测数据处理与分析方法研究[D];辽宁工程技术大学;2007年
5 张成萍;残缺数据的填补[D];中南大学;2006年
6 张登攀;路基沉降观测数据处理及预测模型研究[D];长沙理工大学;2008年
7 苏晓庆;基于小波包变换的变形时间序列数据分析方法的研究[D];山东理工大学;2008年
8 袁中萸;多元线性回归模型中缺失数据填补方法的效果比较[D];中南大学;2008年
9 张福荣;自适应卡尔曼滤波在变形监测数据处理中的应用研究[D];长安大学;2009年
10 毕龙珠;混沌时间序列在建筑物变形预测中的应用研究[D];长安大学;2009年
本文编号:2154791
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2154791.html