热水锅炉燃烧系统建模与优化控制研究
[Abstract]:In northern China, the winter is very cold, heating and heating is an important demand of residents' life. Therefore, heating boilers are widely used. However, the combustion control system of heating boiler is operated by manual, and the degree of automation is very low, which results in low energy efficiency and serious air pollution. The combustion system of heating boiler is a difficult object to control, which has the characteristics of nonlinear, strong coupling, long time delay and time varying. How to control the combustion system of heating boiler reasonably and effectively according to the change of load is of great significance to ensure the high efficiency, environmental protection and safe operation of the boiler. In this paper, the chain type coal-fired hot water boiler, which is widely used in heating boiler, is studied, its main working process and principle and the main task of boiler combustion system are analyzed. On this basis, by studying the combustion characteristics and control methods of the hot water boiler, the relationship between the variables in the combustion control system is clarified, and the load control is proposed. The whole control scheme of combustion control system is composed of three relatively independent subsystems: air supply control and air supply control. This paper takes the 20t/h chain-fired hot water boiler of Dalian Xinyu heating Company as the experimental object. By analyzing the main parameters of the combustion system, the three-input and three-output model of the boiler combustion system is given. By analyzing the principle of parameter identification of multi-input multi-output system, the three-input three-output system of hot water boiler is transformed into a system composed of three three-input single-output transfer functions. The recursive least square parameter estimation method is used to model the boiler combustion system, and a good modeling effect is obtained. In view of the characteristics of multiple inputs and multiple outputs of combustion control system and the coupling of various parameters, a PID neural network control algorithm is presented. However, due to the random acquisition of the initial weights, the control effect is easy to fall into local optimum. In this paper, a new adaptive mutation particle swarm optimization algorithm is proposed. The system identification model is used as the control object in the Matlab simulation experiment. Compared with the PID neural network and the PID neural network based on the basic particle swarm optimization, the PID neural network based on self-adaptive particle swarm optimization not only has a fast response, but also has a shorter time to approach the target. Moreover, the relative error of steady state is smaller, which solves the problem that the initial weight of PID neural network is easy to fall into local optimal value and particle swarm optimization is easy to converge prematurely, and the better control effect is obtained.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU832.21;TP273
【参考文献】
相关期刊论文 前10条
1 郑德忠;刘佳;葛文谦;;链条式热水锅炉控制的研究[J];传感技术学报;2006年01期
2 张爱民;张杭;陈德桂;李劲君;;基于系统辨识的电子设备建模及其应用[J];电工技术学报;2009年08期
3 吴昊;余岳峰;徐星星;;多输入多输出热工系统的辨识与建模研究[J];动力工程学报;2010年03期
4 魏明;杨楠;王向东;陈翔;;静电放电电磁脉冲能量耦合的系统辨识建模[J];高电压技术;2010年08期
5 于浩洋,景方,宋清昆,陈树生;模糊控制在燃煤锅炉燃烧系统中的应用研究[J];哈尔滨理工大学学报;2003年01期
6 朱大奇;人工神经网络研究现状及其展望[J];江南大学学报;2004年01期
7 阳春华;谷丽姗;桂卫华;;自适应变异的粒子群优化算法[J];计算机工程;2008年16期
8 谢林柏;丁锋;王艳;;基于辅助模型的量化控制系统辨识方法[J];控制理论与应用;2009年03期
9 朴海国;王志新;张华强;;基于合作粒子群算法的PID神经网络非线性控制系统[J];控制理论与应用;2009年12期
10 舒怀林,郭秀才;多变量强耦合时变系统的PID神经网络控制[J];工矿自动化;2003年05期
相关硕士学位论文 前8条
1 李彩玲;改进PSO算法在综合负荷建模中的应用[D];长沙理工大学;2010年
2 徐涛;预测控制在锅炉控制系统中的应用[D];大连海事大学;2004年
3 张伟伟;工业锅炉燃烧系统辨识与建模研究[D];上海交通大学;2007年
4 黄以明;集中供热管网优化设计[D];西安理工大学;2007年
5 刘建军;神经网络广义预测锅炉燃烧控制研究[D];燕山大学;2007年
6 郑安平;基于PID神经网络的三自由度飞行器模型控制研究[D];南京理工大学;2008年
7 吴明永;工业锅炉控制策略研究与控制系统设计[D];兰州理工大学;2009年
8 范环宇;燃煤供暖锅炉自动控制系统的设计与研究[D];东北大学;2008年
,本文编号:2282505
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/2282505.html