当前位置:主页 > 科技论文 > 石油论文 >

致密油气田中流体输运特征和工程方法

发布时间:2018-02-23 02:32

  本文关键词: 致密油气藏 渗流机理 微纳米流动 微管 边界条件 边界粘滞层 出处:《浙江海洋大学》2017年硕士论文 论文类型:学位论文


【摘要】:在传统的流体力学中,流体在固壁处流速为零,即无滑移边界条件。在微纳米条件下,由于固液界面作用力增大,无滑移边界条件不再适用。该文首先从微米石英圆管中的流动实验现象出发,给出润湿性边界粘滞层厚度随应力变化的边界模型。在此基础上推导出层流条件下,微纳米管中的流量公式,并对流量公式进行渐近分析,同时也分析流动微纳米尺度下的流动特征。接下来用微米圆管中去离子水的流动实验,对新建的理论模型进行验证;再将新模型应用于致密多孔介质,推导出考虑负滑移影响的渗流模型,并对渗流模型进行渐进分析,同时也用致密岩芯中去离子水的流动实验,对新建的理论模型进行验证。进而将新模型应用于油藏工程中求得其产能解,并对其产能及压力分布分别进行理论分析。最后将单相非线性渗流模型推广至两相非线性渗流,推导出两相在致密多孔介质中的渗流模型,并再用致密岩芯中去离子水流动实验验证,分别又对渗透率及粘度比对致密油藏中两相渗流的影响进行分析。研究表明:润湿性条件下,边界粘滞层厚度随驱动力的增大而减小;新建立的微纳米尺度下的边界模型以及所运用的流量公式非常符合实验结果,其中一次方的流量模型应用时更为简单,在压力梯度较小时,指数项起作用产生了非线性流动的效果;通过与利用核磁共振方法进行的可动油饱和度实验所得出的结果相对比,可发现两者所得到的实验数据基本吻合。因此可以得出结论:当渗透率较低,可动油减少的情况下,与之相对应的边界黏附层便会增厚;在水油两相渗流条件下,即使饱和度不同,油水的静态边界层厚度也大多都几近相似,其粘度比的变化与边界粘附层的厚度相同,大都没有明显规律。
[Abstract]:In traditional hydrodynamics, the velocity of fluid at the solid wall is zero, that is, there is no slip boundary condition. The non-slip boundary condition is no longer applicable. In this paper, a boundary model of the thickness of the wettable boundary viscous layer varying with the stress is given based on the flow experiment in a micron quartz tube. On this basis, the laminar flow condition is derived. The flow formula in micronanotubes, and the asymptotic analysis of the flow formula, at the same time, the flow characteristics of the flow in the micro-nano scale are also analyzed. Then, the new theoretical model is verified by the flow experiment of deionized water in the micron circular tube. Then the new model is applied to the dense porous media, the seepage model considering the negative slip effect is deduced, and the seepage model is analyzed gradually. At the same time, the flow experiment of deionized water in the dense core is also used. The new model is applied to reservoir engineering to obtain its productivity solution, and its productivity and pressure distribution are analyzed respectively. Finally, the single-phase nonlinear seepage model is extended to two-phase nonlinear seepage flow. The seepage model of two phases in dense porous media is derived and verified by experiments of deionized water flow in dense cores. The effects of permeability and viscosity ratio on two-phase percolation in dense reservoirs are analyzed. The results show that the thickness of boundary viscous layer decreases with the increase of driving force under wettability condition. The new boundary model and the flow formula are in good agreement with the experimental results. The flow model of the first power is simpler when the pressure gradient is small. The effect of the exponential term on the nonlinear flow is obtained by comparing it with the results obtained from the movable oil saturation experiment conducted by nuclear magnetic resonance (NMR). It can be found that the experimental data obtained by the two methods are in good agreement with each other. Therefore, it can be concluded that when the permeability is low and the movable oil decreases, the corresponding boundary adhesion layer will become thicker, and under the condition of water and oil two-phase seepage, Even if saturation is different, the thickness of static boundary layer of oil and water is almost the same, and the change of viscosity ratio is the same as the thickness of boundary adhesion layer, and most of them have no obvious regularity.
【学位授予单位】:浙江海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE349

【参考文献】

相关期刊论文 前10条

1 李卫东;吴亚芳;马哲;苏玉亮;;考虑渗透率变化的低渗透油藏非达西渗流模型[J];陕西科技大学学报(自然科学版);2015年02期

2 姜桂林;张承武;管宁;刘志刚;邱德来;;水在不同管径超疏水性微管内的流动特性[J];山东科学;2015年01期

3 姜龙燕;荀小全;王楠;杨帆;;致密油藏直井体积压裂非稳态产能评价模型[J];断块油气田;2015年01期

4 徐栋;胡荐博;高盛驰;;储层岩石毛管束模型研究[J];内江科技;2014年08期

5 姜瑞忠;于成超;孔垂显;阳旭;孙召勃;;低渗透油藏优势渗流通道模型的建立及应用[J];特种油气藏;2014年05期

6 刘雄;田昌炳;姜龙燕;杨帆;徐秋枫;;致密油藏直井体积压裂稳态产能评价模型[J];东北石油大学学报;2014年01期

7 熊健;曾山;王绍平;;低渗透油藏变导流垂直裂缝井产能模型[J];岩性油气藏;2013年06期

8 陈忠;;低渗透油藏流体渗流的数学模型及算法研究[J];石油天然气学报;2013年12期

9 黄延章;杨正明;何英;王学武;骆雨田;;低渗透多孔介质中的非线性渗流理论[J];力学与实践;2013年05期

10 凌浩川;杨正明;肖前华;徐庆岩;;致密油储层渗流新模型研究[J];科学技术与工程;2013年26期

相关会议论文 前1条

1 左加传;宋付权;;石英微管中两相流体界面特征[A];第二十届全国水动力学研讨会文集[C];2007年



本文编号:1525911

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1525911.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2bf93***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com