潜油电泵耐砂蚀技术研究
本文选题:潜油电泵 切入点:砂蚀 出处:《哈尔滨工业大学》2015年硕士论文 论文类型:学位论文
【摘要】:潜油电泵主要用于油井大排量抽吸液体,是油气田稳产、高产和经济效益较好的机械采油方式之一。由于采液强度增加,地层压力逐步下降,砂岩承受载荷增加,导致胶结物受到破坏,引起油井出砂。潜油电泵在生产过程中要求井液含砂量不能超过万分之五,含砂量过高则会造成潜油泵叶导轮磨损,排量效率下降;扶正轴承磨损,配合间隙增大,机组振动加剧,保护器机械密封失效,井液进入电机;机组连接螺栓松动,甚至断裂,导致机组掉井事故。如何改进现有潜油电泵的防砂工艺、研发新型结构防砂泵,有效延长机组运行寿命,已成为摆在各家机械采油设备供应商面前的重要课题。本文从油井出砂对潜油电泵造成的损坏形式入手,运用计算流体力学理论和Fluent分析软件对潜油泵的主要过流部件叶轮和导轮进行仿真分析,并对潜油电泵在含砂井中实际应用时磨损发生的部位进行统计,对磨损原因进行分析,并通过室内试验进行验证。针对磨损发生的部位及原因改进叶导轮结构,选用硬度较高的材质并合理设计扶正轴承位置,通过合理设计叶轮在导轮中的轴向串动量、叶轮锁紧结构、改变机组安装工艺,使潜油泵工作时叶轮上下盖板不与导轮接触,保证一定的悬浮量,在井液冲击作用下砂砾不易积存,叶轮、砂砾、导轮三者间不发生硬摩擦。增强潜油电泵在高含砂井液中的适应能力,有效解决了油井出砂造成的潜油电泵失效问题。本文研制的耐砂蚀潜油电泵机组经公司技术部门鉴定验收后,将在国内外含砂油田有较好的应用前景,不仅能有效延长机组在含砂井中的使用寿命,还能让公司的产品性能跨上一个新台阶,增强公司参与国内外市场的竞争力,为公司创造巨大的经济效益和社会效益。研制过程中进行的整体压紧式潜油泵在工作时的轴向力测试将为整体压紧式潜油泵设计和高承载止推轴承保护器研究提供相关数据。
[Abstract]:Electric submersible pump is mainly used for pumping liquid in oil wells with large displacement. It is one of the mechanical oil recovery methods with stable production, high yield and good economic benefit in oil and gas fields. Due to the increase of fluid recovery intensity, formation pressure decreases gradually, and the load on sandstone increases. During the production process of submersible oil pump, the sand content of well fluid should not exceed 5/10000. If the sand content is too high, it will cause wear of the impeller of the submersible pump and decrease of discharge efficiency. When the matching gap increases, the vibration of the unit intensifies, the mechanical seal of the protector fails and the well fluid enters the motor; the connection bolt of the unit is loosened or even broken, which results in the accident of the unit falling out. How to improve the sand control technology of the existing submersible electric pump, Research and development of a new type of structural sand control pump, which effectively prolongs the operating life of the unit, has become an important subject in front of various mechanical oil recovery equipment suppliers. This paper begins with the damage form caused by the oil well sand production to the submersible electric pump. By using the theory of computational fluid dynamics and Fluent software, the impeller and guide wheel of submersible pump are simulated and analyzed, and the wear position of submersible electric pump in sand well is counted, and the cause of wear is analyzed. According to the position and reason of wear, the impeller structure is improved, the material with high hardness is selected and the position of the bearing is reasonably designed, and the axial serial momentum of impeller in the guide wheel is reasonably designed. Impeller locking structure, changing the installation process of the unit, making the upper and lower cover plate of the impeller not in contact with the guide wheel when the submersible pump is working, ensuring a certain amount of suspension, the sand gravel is not easy to accumulate under the action of the well fluid impact, the impeller, the sand gravel, There is no hard friction among the three guide wheels. The adaptability of the submersible electric pump in the high sand well fluid is enhanced. The problem of submersible oil pump failure caused by sand production in oil wells is effectively solved. After the identification and acceptance by the technical department of the company, the submersible oil pump unit developed in this paper will have a good application prospect in sand bearing oil fields at home and abroad. It can not only effectively prolong the service life of the units in sand wells, but also enable the company to take its product performance to a new level and enhance the competitiveness of the company in participating in the domestic and foreign markets. The axial force test of the whole pressure tight submersible oil pump will provide the relevant data for the design of the integral pressure tight submersible oil pump and the research of the high bearing thrust bearing protector.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE933.3
【参考文献】
相关期刊论文 前10条
1 梁颖;袁宗明;陈学敏;金俊卿;赵凯;;基于CFD的液固两相流冲刷腐蚀预测研究[J];石油化工应用;2014年02期
2 王尊策;陈思;李森;徐艳;;基于CFD的潜油电泵叶轮冲刷磨损数值模拟[J];石油矿场机械;2013年05期
3 张仁斌;;延长潜油电泵井生产周期及新技术应用[J];中国石油和化工标准与质量;2011年08期
4 李杰;;潜油电泵在出砂油井中的破坏形式及防砂技术[J];装备制造技术;2009年11期
5 施卫东;李启锋;陆伟刚;张德胜;;基于CFD的离心泵轴向力计算与试验[J];农业机械学报;2009年01期
6 董振刚;张铭钧;殷红雯;蔡振东;;压紧式潜油泵设计[J];流体机械;2008年10期
7 雷万能;黄瑞祥;闫世伟;刘伟;;电泵井出砂结垢成因及处理措施[J];内蒙古石油化工;2008年05期
8 杨文清;;出砂井中潜油电泵的设计与应用[J];胜利油田职工大学学报;2007年05期
9 徐守余;王宁;;油层出砂机理研究综述[J];新疆地质;2007年03期
10 陆伟刚;张金凤;袁寿其;;离心泵叶轮轴向力自动平衡新方法[J];中国机械工程;2007年17期
相关硕士学位论文 前5条
1 张修亮;出砂预测技术研究[D];中国石油大学;2011年
2 袁杰;胜坨油田沙二段出砂机理及配套治理措施研究[D];中国石油大学;2009年
3 范建平;螺旋气力取料装置分离机理研究[D];武汉理工大学;2008年
4 朱会;基于MATLAB的旋风分离器内气固两相流场的数值模拟[D];北京化工大学;2007年
5 徐姚;液固两相流冲刷腐蚀数值模拟研究[D];北京化工大学;2001年
,本文编号:1564319
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1564319.html