分馏塔顶循环回流油品腐蚀介质分析及缓蚀剂的筛选
本文选题:分馏塔 切入点:催化顶循环回流 出处:《中国石油大学(华东)》2015年硕士论文 论文类型:学位论文
【摘要】:由于加工高酸原油加工量的增大,近年来常减压、催化、焦化等装置塔顶循回流系统出现了管壁减薄、泄漏、泵体结盐等现象,尤其是催化顶循的腐蚀更为严重,极大地影响了装置的长周期安全运行。因此,本文主要对催化分馏塔顶循环油品、塔顶冷凝水中腐蚀介质及腐蚀产物进行分析,探索催化顶循腐蚀的原因,进一步筛选/合成适合加工高酸原油的分馏塔顶循缓蚀剂。本文通过对顶循油、塔顶冷凝水中腐蚀介质及腐蚀产物的分析得出:催化顶循油中含有一定量的氯离子、硫醇、硫化氢,总硫、碱性氮、酚含量较高;测得其水溶性酸碱pH小于7;GC-MS分析得出,催化顶循油品中存在多种酚类化合物;催化塔顶冷凝水中含有一定量氯离子、硫化物;XRD、XRF分析结果表明,催化顶循腐蚀产物主要是铁的硫化物、氧化物等。进一步以实际塔顶循油为腐蚀环境,考察HCl、H_2S及其油品中存在的含氧、硫、氮的化合物对顶循油腐蚀的影响,综合分析得出催化顶循油中氯化氢、硫化氢、氨及酚类化合物是造成催化顶循腐蚀严重的主要原因,铵盐(氯化铵、硫化铵)、二氧化碳等的存在以及顶循温度较高是造成催化顶循腐蚀的重要因素。本文分别对市售缓蚀剂、自合成的水溶性咪唑啉缓蚀剂和油溶性咪唑啉缓蚀剂进行了缓蚀性能评价。结果显示,在HCl-H_2S水体系模拟顶循油环境中市售缓蚀剂的缓蚀效果MLZYQZ7019;综合在HCl-水体系及HCl-H_2S水体系模拟顶循油环境中评价结果可看出,自合成油溶性缓蚀剂OBIOCIOAI,优于水溶性缓蚀剂。各种缓蚀剂缓蚀率由大到小的顺序为:自合成缓蚀剂OBI油溶性中和缓蚀剂MLZ现场用中和缓蚀剂YQZ7019中和剂EA。以自合成油溶性缓蚀剂OBI缓蚀性能最好,对催化顶循油达到了很好的缓蚀效果。
[Abstract]:Due to the increase of processing quantity of high-acid crude oil, in recent years, in atmospheric and vacuum pressure, catalysis, coking and other equipment tower top circulation system, such phenomena as tube wall thinning, leakage, salt deposition of pump body and so on, especially the corrosion of catalytic top are more serious. The long period safe operation of the unit is greatly affected. Therefore, this paper mainly analyzes the corrosion medium and corrosion products of the top circulating oil of the catalytic fractionator, the condensing water of the tower and the corrosion products, and probes into the cause of the catalytic top corrosion. The corrosion inhibitor of fractionator for processing high acid crude oil was further screened / synthesized. By analyzing the corrosion media and corrosion products of the top path oil, the corrosion media and corrosion products of the top condensing water were analyzed. The results showed that the catalytic top trace oil contained a certain amount of chlorine ion, mercaptan, and mercaptan. Hydrogen sulphide, total sulfur, basic nitrogen, phenol content are high. The water soluble acid and base pH is less than 7% GC-MS analysis shows that there are many phenolic compounds in catalytic top trace oil, catalytic tower top condensate water contains a certain amount of chlorine ion, The results of XRDX XRF analysis of sulfides show that the main corrosion products are iron sulfides and oxides. Furthermore, the presence of oxygen and sulfur in HClN H2S and its oil is investigated by taking the actual tower top oil as the corrosion environment. Comprehensive analysis shows that hydrogen chloride, hydrogen sulfide, ammonia and phenolic compounds are the main reasons for the severe corrosion of catalytic top route oil, ammonium salt (ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride, ammonium chloride). The existence of ammonium sulphide, carbon dioxide and high top temperature are the important factors of catalytic top rate corrosion. The corrosion inhibition properties of water-soluble Imidazoline inhibitor and oil-soluble Imidazoline inhibitor were evaluated. The corrosion inhibition effect of the corrosion inhibitor MLZYQZ7019 in the HCl-H_2S water system is simulated in the top track oil environment, and the results can be seen from the comprehensive evaluation in the HCl-water system and the HCl-H_2S water system in the simulated top track oil environment. The self-synthesized oil soluble inhibitor Obio CIOAI is superior to the water soluble inhibitor. The order of corrosion inhibition rate of various inhibitors is: Self-synthetic inhibitor OBI oil soluble neutralizing inhibitor MLZ neutralizing inhibitor YQZ7019 neutralizer EA. The corrosion inhibition performance of soluble corrosion inhibitor OBI is the best. A good corrosion inhibition effect is achieved on the catalytic top track oil.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE986
【相似文献】
相关期刊论文 前10条
1 Р·С·ЗАИНУЛИН;孙正海;;应力状态对于外部压力和腐蚀介质作用下的薄壁容器寿命影响的估计[J];国外油田工程;1987年01期
2 吕平;李鑫茂;马学强;;腐蚀介质对聚脲性能的影响[J];新型建筑材料;2010年10期
3 黄海军;李婵;王俊;;典型大气腐蚀介质的灰色预测模型分析[J];装备环境工程;2012年01期
4 В.Н.Федоров ,孙良珍;提高与腐蚀介质接触的机器零部件的防腐性能[J];粮油加工与食品机械;1985年05期
5 黄子铮;腐蚀介质对聚合物力学性能的影响(Ⅰ)[J];合成材料老化与应用;1994年02期
6 徐登福;张庆;吴刚;;不同腐蚀介质对高锰钢摩擦学性能影响机制的研究[J];海军航空工程学院学报;2007年03期
7 沈燕;张德坤;王崧全;张泽峰;葛世荣;;矿用钢丝在腐蚀介质环境下的微动行为研究[J];摩擦学学报;2011年01期
8 蔡廉;;建筑防腐蚀(一)[J];化肥设计;1979年02期
9 桂明祥;;对HIC试验中两种不同腐蚀介质酸碱度的探讨[J];宝钢技术;2006年03期
10 刘淑华;;环卫设施腐蚀特点和腐蚀介质特性分析[J];内蒙古石油化工;2008年16期
相关会议论文 前3条
1 张良界;杨闽红;吕忠洲;;LTC技术在军械防腐上的应用[A];湖北省第十届热处理年会论文集[C];2006年
2 胡伟叶;周明;;腐蚀介质下1Cr18Ni9Ti薄壁波纹管失效模式分析[A];2011年全国失效分析学术会议论文集[C];2011年
3 况敏;邓春明;林松盛;赵利;;一种薄装饰镀膜腐蚀行为研究[A];2011年全国失效分析学术会议论文集[C];2011年
相关硕士学位论文 前5条
1 王雪;分馏塔顶循环回流油品腐蚀介质分析及缓蚀剂的筛选[D];中国石油大学(华东);2015年
2 段光韬;砂浆锚杆腐蚀介质扩散模型及拉拔数值试验研究[D];重庆大学;2014年
3 张号;Q235在应力和腐蚀介质协同作用下的损伤和寿命评估[D];青岛科技大学;2012年
4 张玉轩;胜华炼油厂设备防腐对策[D];中国石油大学;2007年
5 李强;Cr13钢在饱和CO_2/H_2S介质中腐蚀与防护研究[D];北京化工大学;2011年
,本文编号:1572059
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1572059.html