稠油油藏多元热流体试井解释技术研究
本文选题:稠油油藏 切入点:多元热流体 出处:《中国地质大学(北京)》2015年博士论文 论文类型:学位论文
【摘要】:多元热流体吞吐是指同时注入蒸汽(热水)、CO2、N2的多种高温流体,焖井放喷后转正常生产,近年方兴未艾。多元热流体试井是目前为数不多的热采动态监测技术,是及时掌握吞吐过程中地下参数变化,设计调控措施的直接依据。目前国内外尚未有适用于直井、水平井多元热流体吞吐过程解释的理论和方法。多元热流体试井同时监测温度和压力,目前部分测试参数理论响应规律不清,参考稠油油藏热采原理,构建了稠油油藏多元热流体吞吐直井、水平井试井解释流程,推导并完善了温度、多相控制下的理论压力响应模型,归纳了焖井和高温生产期间压力响应规律,编写了相应软件,提出了配套的解释方法。主要创新性和重点研究工作包括四点:(1)针对多元热流体焖井和高温生产过程中地下流场存在多相,温度、相态变化大且粘度等关键参数对温度敏感的特征,确定了拟压力函数形式。基于焖井和高温生产测试过程中压力与时间的单调变化关系,提出了拟压力函数时态转化概念和方法,实现了焖井和高温生产过程中理论压力的求解。(2)针对目前直井热采试井模型以考虑粘度分区复合特征为主,不能描述温度,密度、粘度、相态连续变化的不足,采用拟压力函数考虑直井焖井和高温生产过程中气体饱和度、温度连续变化对压力的影响,建立了以拟压力函数为变量的直井热采试井数学模型。在常规Laplace变换、Sthfest数值反演求解流程中引入拟压力函数时态转化方法,实现了直井焖井和高温生产过程中理论压力的求解。(3)针对目前缺少水平井热采试井模型,常规水平井冷采试井模型不能考虑热区和冷区形状的问题,将水平井热区假设为以水平段为轴的圆柱体,建立了对应的数学模型。利用拟压力函数时态转化方法,建立了反映波及半径的线源函数。结合厚度为水平段长度的板源函数,应用Newman乘积方法构建了点源函数。采用Duhamel原理、Laplace变换和Stehfest数值反演方法,实现了水平井焖井和高温生产过程中理论压力的求解。(4)归纳、明确了多元热流体吞吐过程焖井和高温生产期间压力响应规律。筛选了焖井过程压力响应敏感参数:内外区渗透率、加热半径、蒸汽干度、注入温度、吸气段长度;高温生产过程压力响应敏感参数:内外区渗透率、加热半径、出液段长度。尤其是明晰了蒸汽干度、水加热半径影响压力和压力导数曲线位置、凹形大小和标准化压力曲线第一个峰,水平井吸气(出液)段长度影响压力和压力导数曲线第一个峰。在理论研究的基础上,编制了多元热流体试井解释软件,完成了正确性验证。结合多元热流体吞吐过程焖井和高温生产期间压力响应规律,提出了直井、水平井多元热流体试井焖井和高温生产测试过程的配套解释流程,并完成了解释应用。
[Abstract]:Multicomponent thermal fluid huff and puff refers to a variety of high temperature fluids that simultaneously inject steam (hot water and CO _ 2N _ 2), and turn to normal production after release of braised well. In recent years, multi-element thermal fluid well testing is one of the few current monitoring techniques for thermal recovery performance. It is the direct basis for mastering the change of underground parameters and designing the control measures in time. At present, there is no suitable for vertical wells at home and abroad. The theory and method of interpretation of multicomponent thermal fluid huff and puff process in horizontal well. The temperature and pressure are monitored simultaneously by multicomponent thermal fluid well test. At present, the theoretical response law of some test parameters is unclear, referring to the thermal recovery principle of heavy oil reservoir, In this paper, the well test interpretation flow of multicomponent heat fluid huff and puff vertical well and horizontal well in heavy oil reservoir is constructed, the theoretical pressure response model under temperature and multiphase control is deduced and perfected, and the pressure response law during braised well and high temperature production is summarized. The corresponding software is compiled, and the corresponding interpretation method is put forward. The main innovation and key research work include four points: 1) aiming at the existence of multi-phase and temperature in the underground flow field in the process of multi-element hot fluid braising and high temperature production, The key parameters such as phase state change and viscosity are sensitive to temperature, and the pseudo pressure function form is determined. Based on the monotonic variation of pressure and time in braised well and high temperature production test, The concept and method of temporal transformation of pseudo pressure function are put forward. The solution of theoretical pressure in braised well and high temperature production is realized. Because of the shortage of continuous change of viscosity and phase state, the effect of continuous variation of temperature on pressure is considered by using pseudo pressure function to consider the saturation of gas in the process of direct well braising and high temperature production. A mathematical model of thermal recovery testing for vertical wells with pseudo pressure function as variable is established. The temporal transformation method of quasi pressure function is introduced in the conventional Laplace transform and Sthfest numerical inversion process. In view of the lack of horizontal well thermal recovery well test model at present, the conventional horizontal well cold production well test model can not consider the problem of hot zone and cold zone shape. The thermal region of horizontal well is assumed to be a cylinder with horizontal section as the axis, and the corresponding mathematical model is established. By using the method of temporal transformation of pseudo pressure function, a linear source function reflecting the sweep radius is established, and the plate source function with thickness as the length of horizontal section is established. The point source function is constructed by using the Newman product method, the Duhamel principle and the Stehfest numerical inversion method are used to realize the theoretical pressure solution in the process of horizontal well braising and high temperature production. The rules of pressure response during multicomponent hot fluid soaking and high temperature production were determined. The sensitive parameters of pressure response in braised well were selected: permeability inside and outside, heating radius, steam dryness, injection temperature, length of inspiratory section; The sensitive parameters of pressure response during high temperature production are: permeability, heating radius, length of the outlet, especially the steam dryness, the water heating radius affects the position of pressure and pressure derivative curve. The first peak of concave size and standardized pressure curve, and the first peak of horizontal well suction section length affecting pressure and pressure derivative curve. On the basis of theoretical research, a multivariate thermal fluid well test interpretation software is developed. The correctness verification has been completed. Combined with the pressure response law of braised well and high temperature production during multicomponent hot fluid huff and puff process, a complete set of interpretation flow is put forward for straight well, horizontal well multivariate hot fluid well test and high temperature production test process. And completed the application of interpretation.
【学位授予单位】:中国地质大学(北京)
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TE353
【相似文献】
相关期刊论文 前10条
1 王悌义;李星星;;热流体喷射变形机理与喷嘴结构[J];合成纤维工业;1991年01期
2 ;不污染环境的天然传热流体[J];现代化工;2000年01期
3 高波,陶明信,王万春;深部热流体对油气成藏的影响[J];矿物岩石地球化学通报;2001年01期
4 薄冬梅;姜林;唐艳军;鲁雪松;于翠玲;;热流体活动与油气成藏[J];西南石油大学学报;2007年05期
5 李思田;;为实现油气领域的重大突破——“活动热流体的历史研究”简介[J];中国海上油气;1992年06期
6 陈志雄;;西藏高温热流体钻探技术[J];西部探矿工程;1992年01期
7 黄志良,,刘庆祥;热流体向围岩传热过程的理论研究[J];湖北地质;1996年01期
8 梁伟;赵晓红;张紫军;刘辉;乔真;;多元热流体提高稠油油藏采收率作用机理及应用[J];石油地质与工程;2014年03期
9 刘光成;;渤海稠油多元热流体吞吐技术研究[J];长江大学学报(自科版);2014年10期
10 杨兵;李敬松;朱国金;张贤松;宫汝祥;张颖;;渤海N油田普通稠油多元热流体驱可行性研究[J];石油地质与工程;2014年04期
相关会议论文 前4条
1 曾溅辉;;东营凹陷热流体活动及其对水—岩相互作用的影响[A];石油大学(北京)盆地与油藏研究中心成立十周年成果选编(1993—2003)[C];2003年
2 王魁元;;金矿成矿热流体来源深度的判断[A];中国地质科学院天津地质矿产研究所文集(11)[C];1985年
3 聂逢君;严兆彬;林双幸;饶明辉;杨永纪;张成勇;;尼日尔阿泽里克地区砂岩中铀的热流体成矿作用[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第6册)[C];2009年
4 张寅平;王馨;陈斌娇;徐慧;杨睿;;潜热型功能热流体制备、流动和强化换热特性研究[A];制冷空调新技术进展——第三届制冷空调新技术研讨会论文集[C];2005年
相关博士学位论文 前2条
1 陈昌;基于面向对象的热流体系统建模方法及应用研究[D];华中科技大学;2013年
2 第五鹏祥;稠油油藏多元热流体试井解释技术研究[D];中国地质大学(北京);2015年
相关硕士学位论文 前2条
1 聂海涛;水平井多元热流体驱室内实验研究[D];中国石油大学(华东);2013年
2 周小明;磁场对双层流体热毛细对流的影响[D];南京航空航天大学;2008年
本文编号:1577919
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1577919.html