多孔介质中天然气水合物降压分解特性研究
本文选题:天然气水合物 切入点:分解特性 出处:《大连理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:天然气水合物是一种固态的、非化学计量的、束缚有气体分子的笼型冰状晶体化合物,主要分布于冻土与海洋沉积物中的高压低温区域,其巨大的储量被认为是未来潜在能源。鉴于目前不同水合物储藏开采的可行性以及经济性问题,降压开采被认为是水合物三种开采方法中最有效率的,且可以联合其他开采技术同时使用,因此研究沉积物中水合物降压开采过程的分解特性对于水合物储藏的利用具有重大意义。本文实验研究了产气压力和多孔介质导热系数对甲烷水合物降压分解特性的影响,分析了水合物二次生成和结冰现象的诱因,最后从储层显热和外围传热两方面讨论了传热因素对水合物降压分解的影响。研究表明,产气压力的降低以及储层导热系数的增大能够有效提高水合物的分解速率,水合物的整个降压产气过程可以分为三个阶段:自由气的排出、储层显热的消耗、以及外围传热驱动下的水合物分解阶段。第一阶段,储层中自由气开始产出,但甲烷水合物仍未分解;第二阶段,储层中水合物沿着相平衡线整体同时分解,水合物分解所需热量主要来自储层显热,而在第三阶段,储层压力降至产气压力,水合物分解则转变为外围传热作用下的由外向内分解。由于储层显热和外围传热的不足,水合物二次生成和结冰现象常出现在储层内部靠近产气井的区域,但在高导热系数储层中并未发生。此外,本文还引入了斯特藩数(Ste)和水合物分解速率常数(Kd)来研究储层显热和外围传热的对水合物降压分解的影响,结果表明两个传热因素是水合物降压分解的主要驱动力,但两者大小均取决于水合物储层的产气压力。同时,本文还建立了水合物降压分解的数值模型,在Darcy定律中考虑了重力项对气水两相渗流速度的影响,通过与本文实验结果的对比,验证了该模型的准确性,并分析了降压产气过程中储层压力、温度以及水合物饱和度的分布。研究表明,外部传热主要经储层侧面和下盖层传入储层内部,并证明了水合物由初期的空间整体分解转变为外部传热主导的由外向内分解的过程。
[Abstract]:Natural gas hydrate is a solid, non-stoichiometric, gaseous molecules bound cage ice crystal compounds, mainly distributed in frozen soil and marine sediments in the high-pressure low-temperature region, Its huge reserves are considered to be potential sources of energy in the future. Given the feasibility and economy of exploiting different hydrate reserves, depressurized extraction is considered to be the most efficient of the three methods of hydrate extraction. And can be used in conjunction with other mining technologies, Therefore, it is of great significance to study the decomposing characteristics of hydrate depressurization in sediments. The effects of gas production pressure and thermal conductivity of porous media on the decomposing characteristics of methane hydrate are experimentally studied in this paper. The inducement of hydrate secondary formation and ice formation is analyzed. Finally, the influence of heat transfer factors on hydrate decomposing is discussed from two aspects of reservoir sensible heat transfer and peripheral heat transfer. The reduction of gas production pressure and the increase of reservoir thermal conductivity can effectively increase the decomposition rate of hydrate. The whole process of reducing pressure and producing gas of hydrate can be divided into three stages: the discharge of free gas and the consumption of sensible heat in reservoir. In the first stage, the free gas in the reservoir begins to produce, but the methane hydrate is not decomposed, in the second stage, the hydrate in the reservoir is decomposed simultaneously along the phase equilibrium line. The heat needed for hydrate decomposition mainly comes from the sensible heat in the reservoir. In the third stage, the reservoir pressure drops to the gas production pressure, and the hydrate decomposition is transformed into the outer to inner decomposition under the action of the peripheral heat transfer, because of the deficiency of the reservoir sensible heat and the peripheral heat transfer. The secondary formation and ice formation of hydrate often occur in the area near the gas-producing well inside the reservoir, but not in the reservoir with high thermal conductivity. In this paper, Stean and Kd) are introduced to study the effect of reservoir sensible heat and peripheral heat transfer on hydrate decomposing. The results show that two heat transfer factors are the main driving forces of hydrate decomposing. But both of them depend on the gas production pressure of hydrate reservoir. At the same time, a numerical model of gas hydrate decomposing is established, and the influence of gravity term on gas-water two-phase percolation velocity is considered in Darcy's law. The accuracy of the model is verified by comparing with the experimental results in this paper, and the distribution of reservoir pressure, temperature and hydrate saturation in the process of reducing pressure and gas production is analyzed. The external heat transfer is mainly transmitted to the reservoir interior through the lateral and lower caprock layers, and it is proved that the hydrate has changed from the space integral decomposition in the initial stage to the outer to internal decomposition process dominated by the external heat transfer.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE311
【共引文献】
相关期刊论文 前5条
1 张学民;李金平;吴青柏;王春龙;南军虎;;CO_2置换天然气水合物中CH_4的研究进展[J];过程工程学报;2014年04期
2 张学民;李金平;吴青柏;南军虎;焦亮;;CO_2置换开采冻土区天然气水合物中CH_4的可行性研究[J];化工进展;2014年S1期
3 刘乐乐;鲁晓兵;张旭辉;;天然气水合物分解引起多孔介质变形流固耦合研究[J];天然气地球科学;2013年05期
4 刘乐乐;鲁晓兵;张旭辉;;降压开采模拟试验的水合物分解阵面演化过程[J];实验力学;2015年04期
5 Jun Chen;Yan-Hong Wang;Xue-Mei Lang;Shuan-Shi Fan;;Energy-efficient methods for production methane from natural gas hydrates[J];Journal of Energy Chemistry;2015年05期
相关博士学位论文 前3条
1 杨圣文;天然气水合物开采模拟与能效分析[D];华南理工大学;2013年
2 李洋辉;天然气水合物沉积物强度及变形特性研究[D];大连理工大学;2013年
3 石定贤;多孔介质天然气水合物开采的基础研究[D];太原理工大学;2014年
相关硕士学位论文 前4条
1 李杰;天然气水合物注热、降压开采可行性实验研究[D];中国石油大学(华东);2013年
2 刘笛;多孔介质中天然气水合物分解过程传热分析[D];大连理工大学;2014年
3 马小晶;储层物性对甲烷水合物分解影响的模型研究[D];大连理工大学;2014年
4 郝天翔;应用FLUENT数值模拟天然气水合物开采过程[D];吉林大学;2015年
,本文编号:1650416
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1650416.html