石油井机器人刚柔混合行走机构设计与仿真
发布时间:2018-04-28 03:56
本文选题:井下机器人 + 行走机构 ; 参考:《东北石油大学》2015年硕士论文
【摘要】:本文在充分调研石油井下牵引器国内外发展现状的基础上,分析了国内外现有石油井下牵引器的性能与参数资料,考虑了未来水平井钻修作业技术需求,提出了未来石油井下牵引器需要满足的要求与发展趋势是向更加智能化的石油井机器人发展,并提出了一种采用刚柔混合行走机构的石油井机器人行走方案。该方案采用柔性的弹簧支片与刚性连杆刚柔混合的方式代替了传统伸缩式石油井下牵引器的刚性连杆胀闸机构,较之目前石油井下牵引器所采用的刚性蠕动行走方案与轮式行走方案能提供更大的井下环境适应性。本文主要论述的内容有:石油井机器人行走机构的结构设计、参数设计;采用2R伪刚体模型建立柔性弹簧支片的静力学模型,得出柔性弹簧支片受力与变形间的关系方程,并推导出行走机构驱动力与弹簧支片和管壁间接触力的关系方程;通过多体动力学仿真软件RecurDyn对石油井机器人行走机构对多种井下环境的适应性进行了动力学仿真研究;最后对石油井机器人实验样机进行了实验研究并对实验结果与仿真结果进行了对比分析。文中详细介绍了RecurDyn软件中如何导入模型、添加约束、创建接触、添加驱动等操作的基本步骤。基于RecurDyn对行走机构在无约束情况下的运动状态与有管壁约束情况下的运动状态进行了仿真研究,对弹簧支片的2R伪刚体模型进行了验证。针对缩径、凸起、局部错位三种常见的井下套管变形情况对行走机构进行了井下环境适应性仿真分析,得出了在给定的行走机构尺寸参数下石油井机器人刚柔混合行走机构在上述三种套管变形情况下所能提供的涨紧力与适应性。本文最后介绍了石油井机器人行走机构接触力实验装置和石油井机器人试验样机与石油井机器人牵引力地面测试装置,并对行走机构对不同尺寸套管壁所能产生的接触力以及石油井机器人所能产生的牵引力进行了地面实验。实验证明采用刚柔混合行走机构的石油井机器人在一般井下环境中能产生较大牵引力且具有较好的通过性能,验证了仿真模型的正确性。
[Abstract]:On the basis of investigating the present situation of oil downhole tractor at home and abroad, this paper analyzes the performance and parameter data of oil downhole tractor at home and abroad, and considers the technical requirements of drilling and repairing in future horizontal well. It is pointed out that the requirement and development trend of the future oil downhole tractor is to develop a more intelligent oil well robot, and a walking scheme of oil well robot using rigid and flexible hybrid walking mechanism is proposed. In this scheme, the flexible spring support and rigid connecting rod are mixed together to replace the traditional expansion type oil downhole tractor's rigid connecting rod flatulence mechanism. Compared with the rigid peristaltic walking scheme and wheeled walking scheme adopted by the oil downhole tractor at present, it can provide greater underground environmental adaptability. The main contents of this paper are as follows: structure design, parameter design of walking mechanism of oil well robot, static model of flexible spring branch established by 2R pseudo-rigid body model, and the relation equation between force and deformation of flexible spring branch. The relation equation between driving force of walking mechanism and contact force between spring branch and pipe wall is deduced, and the adaptability of walking mechanism of oil well robot to various downhole environments is studied by means of multi-body dynamics simulation software RecurDyn. Finally, the experimental prototype of oil well robot is studied, and the experimental results are compared with the simulation results. In this paper, the basic steps of how to import model, add constraints, create contacts and add drivers in RecurDyn software are introduced in detail. Based on RecurDyn, the kinematic state of walking mechanism under unconstrained and tubular constraints is simulated, and the 2R pseudo-rigid body model of spring branch is verified. Aiming at three kinds of common downhole casing deformation such as shrinkage, bulge and local dislocation, the paper simulates and analyzes the underground environment adaptability of the walking mechanism. The tightening force and adaptability of the oil well robot rigid flexible hybrid walking mechanism under the three casing deformation conditions are obtained under the given size parameters of the walking mechanism. Finally, the paper introduces the contact force experimental device of the walking mechanism of the oil well robot and the ground test device of the oil well robot test prototype and the petroleum well robot tractive force. The contact force of the walking mechanism on the pipe wall with different sizes and the traction produced by the oil well robot are tested on the ground. The experimental results show that the oil well robot with rigid and flexible walking mechanism can produce large tractive force in general downhole environment and has good performance. The correctness of the simulation model is verified.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE938
【参考文献】
相关期刊论文 前1条
1 李茜;余跃庆;常星;;基于2R伪刚体模型的柔顺机构动力学建模及特性分析[J];机械工程学报;2012年13期
相关硕士学位论文 前1条
1 曾华军;水平井牵引器驱动系统关键技术研究[D];哈尔滨工业大学;2010年
,本文编号:1813659
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1813659.html