提高界面胶结强度的无皂胶乳水泥和前置液的研究
本文选题:固井 + 胶结强度 ; 参考:《西南石油大学》2015年博士论文
【摘要】:固井界面胶结强度与水泥环层间封隔能力密切相关,而层间封隔能力则是一个关系到安全生产、资源开发效率、经济效益和生态环境保护的综合问题。研究提高或改善界面胶结质量是一项系统工程,需要研究钻井、完井施工作业中不同工作液的性能以及相互作用时工作液的性能,不是研究某种单一的工作液就可以提高界面胶结质量。本文将钻井液、前置液、水泥浆三种工作液作为整体、以纵向体系的方式研究影响界面胶结质量的因素。使用离子型共聚单体AMPS和NaSS制备出用于油井水泥的ASL无皂胶乳。ASL无皂胶乳具有良好的乳液稳定性、成膜性和热稳定性。使用红外光谱和透射电镜研究方法分析了ASL无皂胶乳的化学组分和微观形貌。与THD-818市售胶乳以及NSL传统胶乳相比,ASL无皂胶乳在未加稳定剂时就具有良好的离子稳定性。研究发现AMPS/NaSS的用量在1.3%-1.9%时,ASL无皂胶乳水泥的抗压强度和胶结强度较高。在ASL胶乳水泥浆中加入适量的消泡剂有利于提高胶乳水泥浆的密度和水泥石的抗压强度,D50消泡剂适宜的用量为0.8%;ASL-13胶乳加量为10%-20%时,胶乳水泥浆具有良好的性能,水泥石具有较高的抗压强度和胶结强度;ASL胶乳水泥浆在70℃C和90℃C时有良好的稠化曲线;随着养护温度(70-C~90℃C)的增高或养护时间(1天~15天)的增长,ASL胶乳水泥石的抗压强度和胶结强度均有所增加。使用X衍射分析和综合热分析发现ASL-13胶乳水泥和空白水泥在水泥本体和界面胶结处的水化产物差别很大。在水泥本体中,ASL-13胶乳水泥含有胶乳和较多的碳酸钙,而空白水泥样品中含有较多的氢氧化钙;在胶结界面处,ASL-13胶乳在界面处抑制了氢氧化钙晶体的生长、增加了碳酸钙或钙矾石(AFt)含量、促进了凝胶类水化产物的生长,这些水化产物有利于提高界面胶结强度。使用扫描电镜分析观察到ASL-13胶乳水泥样品和THD-815胶乳水泥样品中都有膜类物质,而且ASL胶乳水泥石的表面粗糙度显著降低。ASL无皂胶乳在油井水泥中的作用机理可以分为两个方面:一是在水泥浆中,传统胶乳依靠乳化剂与水泥颗粒之间的范德华力吸附在水泥颗粒表面。而ASL无皂胶乳是由胶乳粒子表面的离子基团与水泥颗粒形成离子键,同时胶乳粒子以离子键的形式吸附在晶体表面而形成空间位阻,改变了晶体的生长规则,破坏了晶体的正常增长,使得结晶类水化产物的体积减小;二是在水泥石中,在ASL胶乳膜和水泥界面之间是以离子键的形式黏合的,而传统胶乳水泥中,胶乳膜和水泥界面之间是由乳化剂等物质填充的,因此无皂胶乳水泥表现出较高的抗压强度和胶结强度。研究对多种钻井液具有良好冲洗能力的双相前置液体系,前置液在室温及高温稠化后具有良好热稳定性、流变性和悬浮稳定性。前置液与钻井液和水泥浆均有良好的相容性和稳定性。前置液与ASL胶乳水泥浆混合后,对水泥浆的稠化曲线无不良影响。同时使用双相前置液和ASL胶乳水泥时,界面胶结强度最高。双相前置液中的微硅、矿渣等活性材料参与界面处的水泥水化反应,消耗了界面处的氢氧化钙,具有膨胀性的结晶类产物增多;同时使用双相前置液和ASL胶乳水泥时,胶结界面处形成大量结晶类和凝胶类物质,提高了胶结质量。这些实验结果说明ASL无皂胶乳水泥性能良好,与双相前置液配合使用时,可以显著地提高界面胶结强度,有利于提高水泥环的层间封隔能力,提高固井质量。
[Abstract]:Cementing strength is closely related to the interlayer sealing ability of cement ring, and interlayer sealing ability is a comprehensive problem related to safety production, resource development efficiency, economic benefit and ecological environment protection. It is a systematic process to study and improve the interface cementation quality. It is necessary to study drilling and different completion construction operations. The performance of the working fluid and the performance of the working fluid at the time of interaction are not to study a single working fluid to improve the bonding quality of the interface. In this paper, three working fluids of drilling fluid, preliquid and cement slurry are used as a whole to study the factors affecting the interfacial cementation in a vertical system. The use of ionic copolymerized monomers AMPS and NaSS ASL soap free latex.ASL emulsifier free latex used for oil well cement has good emulsion stability, film formation and thermal stability. The chemical composition and Micromorphology of ASL soap free latex are analyzed by infrared and transmission electron microscopy. Compared with THD-818 market latex and NSL traditional latex, ASL soap free latex is not added to stabilizer When the dosage of AMPS/NaSS is 1.3%-1.9%, the compressive strength and cementation strength of ASL soap free latex cement is higher. Adding a proper amount of defoamer to ASL latex cement slurry is beneficial to improving the density of latex cement slurry and the compressive strength of cement stone. The suitable dosage of D50 defoamer is 0.8%; ASL-13 When the latex was added to 10%-20%, the latex cement slurry had good performance. The cement stone had high compressive strength and cementation strength; ASL latex cement slurry had a good thickening curve at 70 C C and 90 C C; with the increase of curing temperature (70-C ~ 90 C C) or curing time (1 days to 15 days), the compressive strength of ASL latex cement stone X diffraction analysis and comprehensive thermal analysis show that the hydration products of ASL-13 latex cement and blank cement are very different in the cement body and the interface cementation. In the cement body, ASL-13 latex cement contains latex and more calcium carbonate, and there are more calcium hydroxide in the blank water mud sample. At the boundary surface, ASL-13 latex inhibits the growth of calcium hydroxide crystal at the interface, increases the content of calcium carbonate or ettringite (AFt), and promotes the growth of the hydrogel type hydration products. These hydrated products are beneficial to improve the bonding strength of the interface. The samples of ASL-13 latex cement and the samples of THD-815 latex cement are observed by scanning electron microscopy. There are membrane materials and the surface roughness of ASL latex cement can be significantly reduced. The mechanism of.ASL soap free latex in oil well cement can be divided into two aspects: one is in cement slurry, the traditional latex depends on the van Edward force between emulsifier and cement particles on the surface of cement particles. And ASL soap free latex is a latex particle table. The ionic group formed the ionic bond with the cement particles, and the latex particles adsorbed on the crystal surface to form the space hindrance, which changed the growth rule of the crystal, destroyed the normal growth of the crystal and reduced the volume of the crystallization products, and two in the cement stone, between the ASL latex film and the cement interface. In the form of ionic bond, and in traditional latex cement, the latex film and the cement interface are filled with emulsifier and other substances. So the soap free latex cement shows high compressive strength and cementation strength. The study of the biphasic pre fluid system with good flushing ability for various drilling fluids, the preliquid is thickened at room temperature and high temperature. It has good thermal stability, rheology and suspension stability. The preliquid has good compatibility and stability with the drilling fluid and cement slurry. The mixture of preliquid and ASL latex cement has no adverse effect on the thickening curve of the cement slurry. At the same time, the interface cementation strength is the highest when the biphase preliquid and the ASL latex cement are used. The microsilicon, slag and other active materials participate in the hydration reaction of cement at the interface, which consumes the calcium hydroxide at the interface and increases the expansion of the crystalline products. At the same time, a large number of crystals and gelatinous substances are formed at the cementation interface when the biphase preliquid and ASL latex cement are used, and the cementation quality is improved. These experimental results show that ASL The soapless latex cement has good performance and can improve the bonding strength of the interface remarkably when it is used with the biphasic preposition solution, which is helpful to improve the interlayer sealing ability of the cement ring and improve the cementing quality.
【学位授予单位】:西南石油大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TE256
【相似文献】
相关期刊论文 前10条
1 吴事难;张金龙;丁士东;刘建;;井下泡沫水泥浆密度计算模型修正[J];石油钻探技术;2013年02期
2 陈军;孙孝真;;水泥浆[J];西部探矿工程;1993年06期
3 杨贵胜;;水泥浆密度自动控制系统[J];钻采工艺;1993年03期
4 孙展利,邓皓;泥浆转变成水泥浆的室内研究[J];钻井液与完井液;1994年01期
5 何世明,徐壁华,何平,陈英,宋周成;水泥浆与泥浆比热的室内研究[J];西南石油学院学报;2000年04期
6 黄柏宗,李宝贵,李希珍,高旭,燕平,高光第;模拟井下温度压力条件的水泥浆沉降稳定性研究[J];钻井液与完井液;2000年02期
7 周芝琴;顾军;殷洋溢;;低损害水泥浆的研究与应用[J];新疆石油科技;2000年01期
8 邬钢;;油井净水泥浆及水泥石优化措施研究[J];断块油气田;2008年02期
9 杨勇;戴建文;林荣壮;王旭光;;高温水泥浆沉降稳定性[J];钻井液与完井液;2010年06期
10 李淑白;耿东士;殷洋溢;赵海涛;;水泥浆对强敏感性砂岩储层损害评价[J];钻井液与完井液;2011年06期
相关会议论文 前2条
1 李玉杰;周文彬;步云鹏;聂东;张子锋;;新型防漏水泥浆在探井中的应用[A];“振兴吉林老工业基地——科技工作者的历史责任”吉林省第三届科学技术学术年会论文集(上册)[C];2004年
2 左景栾;吴建光;孙晗森;张平;吴翔;;煤层气泡沫水泥浆固井技术研究[A];2013年煤层气学术研讨会论文集[C];2013年
相关重要报纸文章 前4条
1 记者 宗钢 通讯员 周仕明 王其春 谭春勤;工程院研发超高密度水泥浆创世界纪录[N];中国石化报;2011年
2 特约记者 吕晶 通讯员 赵晓东;新型水泥浆固井技术成为吐哈油田特色技术[N];中国石油报;2006年
3 田真 王新颖;“封堵可是大有讲究的”[N];中国石化报;2014年
4 洪世界;西南油气田 破超高压油气井开发瓶颈[N];中国石化报;2011年
相关博士学位论文 前1条
1 焦利宾;提高界面胶结强度的无皂胶乳水泥和前置液的研究[D];西南石油大学;2015年
相关硕士学位论文 前10条
1 宋保寰;偏心条件下水泥浆二界面的切应力和胶结强度的研究及应用[D];东北石油大学;2015年
2 张韬;可钻式贴堵工艺技术研究[D];中国石油大学(华东);2014年
3 杨武;应用于低温固井的低密度减轻材料合成与性能评价[D];西南石油大学;2014年
4 张政;触变性水泥浆研究[D];西南石油大学;2016年
5 王元庆;控制深水浅层流灾害的水泥浆技术研究[D];长江大学;2013年
6 徐永辉;深井水泥水化机理研究[D];大庆石油学院;2007年
7 姜晓超;耐200℃油井水泥浆的研制[D];吉林大学;2012年
8 黄守国;适合于深水钻井的低热水泥浆研究[D];长江大学;2012年
9 李玉杰;纤维防漏堵漏水泥浆技术研究[D];大庆石油学院;2008年
10 张维婷;基于SOPC的固井水泥浆密度智能控制方法研究与实现[D];西南石油大学;2011年
,本文编号:1890474
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1890474.html