改性黄原胶和羟丙基交联胍胶过程流变和减阻性能研究
发布时间:2018-05-28 11:34
本文选题:改性黄原胶 + 羟丙基胍胶交联过程 ; 参考:《华东理工大学》2015年硕士论文
【摘要】:本文在碱性条件下对黄原胶(XG)进行改性获得了两种改性的黄原胶:羟丙基黄原胶(HXG)和阳离子黄原胶(CXG)。考察改性黄原胶过程的影响因素,得到合适的反应条件。对改性产品进行波谱学表征,研究了改性前后黄原胶溶液的流变和微流变性能的差异、携砂性能和减阻性能。还考察了低浓度羟丙基胍胶交联过程的微流变和流变指标变化,建立了羟丙基胍胶交联过程的微流变动力学模型。为进一步研究静态携砂机理,采用微流变仪研究了改性黄原胶和交联羟丙基胍胶的携砂微流变性能。使用低温场发射电子扫描显微镜(Cyro-FESEM)对改性前后黄原胶溶液以及羟丙基胍胶溶液交联前后的微观结构进行研究。获得以下主要结论:1)黄原胶分别与1,2-环氧丙烷和3-氯-2-羟丙基三甲基氯化铵进行醚化反应可以获得两种改性产品,羟丙基黄原胶和阳离子黄原胶,两种改性的黄原胶黏度都明显增大,得到合适的醚化反应条件。红外、XRD、元素分析和1H-NMR表明了经过醚化反应得到了预期的产物HXG和CXG。2)黄原胶及其衍生物溶液均表现变现出剪切变稀的流变特性,可以使用非线性共转Jeffreys模型模拟流动曲线;HXG具有更高的黏度、黏弹性和触变性,耐盐性耐酸碱性能稳定,更好的耐温性能和携砂性能。阳离子改性的CXG也具有更高的黏弹性、良好的触变性,但其耐盐性和耐酸碱性能有所下降。3)考察羟丙基胍胶微流变交联过程中宏观黏度因子MVI值(Macroscopic Viscosity Index,简称MVI)随交联剂和pH调节剂的变化,得到合适的交联剂和pH调节剂用量;MVI随着温度升高而降低,不同温度下,羟丙基胍胶交联过程可以使用微流变反应动力学一级模型来拟合。4)获得了剪切流场中低浓度羟丙基胍胶的交联过程黏度随时间的变化,明确了剪切速率和温度对低浓度羟丙基胍胶交联过程的影响。5)HXG和XG溶液在光滑管和粗糙管中都具有减阻效果,对于1g/L的HXG和XG体系,在光滑管中的最大减阻率分别达到72.8%和68.1%,减阻率随着浓度的增大而增大。总浓度为1 g/L,黄原胶与羟丙基胍胶、黄原胶和疏水两性纤维素衍生物FAG-500、 FAG-500与羟丙基胍胶复配时表现出协同减阻效应,黄原胶与长碳链烷基酰胺氧化胺(LQ-FJ)复配时减阻率降低。6) Cyro-FESEM图显示,黄原胶及其衍生物具有一定的网络结构,HXG溶液的结构比XG的史加致密;HXG溶液携砂的结构与未携砂溶液的结构发生变化;浓度低时低浓度羟丙基胍胶溶液的内部结构随着浓度增大而增强;加入交联剂后低浓度羟丙基胍胶溶液形成弱凝胶,网络结构明显增强。本文研究可望为黄原胶体系和羟丙基胍胶凝胶体系的实际应用提供流变学和减阻理论基础。
[Abstract]:In this paper, two kinds of modified xanthan gum (HXG) and cationic xanthan gum (CXGG) were obtained. The factors influencing the process of modified xanthan gum were investigated and the appropriate reaction conditions were obtained. The difference of rheological and microrheological properties, sand carrying capacity and drag reduction of xanthan gum solution before and after modification were studied. The changes of microrheology and rheological indexes during the crosslinking process of hydroxypropyl guanidine gum with low concentration were investigated and the microrheological kinetic model of the crosslinking process of hydroxypropyl guanidine gum was established. The microrheological properties of modified xanthan gum and crosslinked hydroxypropyl guanidine gel were studied by microrheometer in order to study the mechanism of static sand loading. The microstructure of xanthan gum solution and hydroxypropyl guanidine gel solution before and after crosslinking were studied by low temperature field emission electron scanning microscope (Cyro-FESEM). The main conclusions are as follows: (1) the etherification reaction of xanthan gum with 1o 2-epoxypropane and 3-chloro-2-hydroxypropyltrimethylammonium chloride can obtain two modified products, hydroxypropyl xanthan gum and cationic xanthan gum. The viscosity of the two modified xanthan adhesives increased obviously and the proper etherification reaction conditions were obtained. Infrared X-ray diffraction (IR), elemental analysis and 1H-NMR showed that the expected products HXG and CXG.2xanthan gum and their derivative solution showed shear-thinning rheological properties after etherification. The nonlinear co-rotating Jeffreys model can be used to simulate the flow curve HXG with higher viscosity, viscoelasticity and thixotropy, stable acid and alkali resistance to salt, better temperature resistance and sand carrying performance. Cationic modified CXG also has higher viscoelasticity and good thixotropy. However, the salt tolerance and acid and alkaline resistance of hydroxypropylguanidine gel were decreased. 3) the change of macroviscosity factor MVI value and macroscopic Viscosity index with crosslinking agent and pH regulator during microrheological crosslinking of hydroxypropyl guanidine gum was investigated. The suitable amount of crosslinking agent and pH regulator decreased with the increase of temperature. The crosslinking process of hydroxypropyl guanidine gel can be fitted with the first order model of microrheological reaction kinetics. 4) the viscosity of the crosslinking process of hydroxypropyl guanidine gum with low concentration in shear flow field is obtained. The effects of shear rate and temperature on the crosslinking process of hydroxypropyl guanidine gel with low concentration. 5HXG and XG solutions have drag reduction effects in smooth and rough tubes. For the HXG and XG systems of 1g/L, The maximum drag reduction rate in smooth tube is 72.8% and 68.1% respectively. The drag reduction rate increases with the increase of concentration. The total concentration was 1 g / L, xanthan gum and hydroxypropyl guanidine gum, xanthan gum and hydrophobic amphoteric cellulose derivative FAG-500, FAG-500 and hydroxypropyl guanidine gum showed synergistic drag reduction effect. When the xanthan gum was mixed with long chain alkylamine amine oxide (LQ-FJ), the drag reduction rate decreased by. 6) Cyro-FESEM diagram showed that, Xanthan gum and its derivatives have a certain network structure. The structure of HXG solution is more compact than that of XG. The sand carrying structure of HXG solution and the structure of unloaded HXG solution change. The internal structure of low concentration hydroxypropyl guanidine gel solution increases with the increase of concentration, and the low concentration hydroxypropyl guanidine gel solution forms weak gel with the addition of crosslinking agent, and the network structure is obviously enhanced. This study is expected to provide a theoretical basis for rheology and drag reduction of xanthan gum system and hydroxypropyl guanidine gel system.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE357.12
【参考文献】
相关期刊论文 前10条
1 吉毅,李宗石,乔卫红;瓜尔胶的化学改性[J];日用化学工业;2005年02期
2 郭瑞;丁恩勇;;黄原胶的结构、性能与应用[J];日用化学工业;2006年01期
3 汪凯明;;我国非常规油气资源勘探开发前景[J];国外测井技术;2009年03期
4 方波;邹春昱;何良好;朱广宇;吕婷阳;卢海伟;王进爽;侯向前;;阳离子Gemini表面活性剂18-3-18/水杨酸钠胶束体系流变和减阻性能研究[J];高校化学工程学报;2013年01期
5 胡忠前;马喜平;何川;王红;杜剑;;国外低伤害压裂液体系研究新进展[J];海洋石油;2007年03期
6 陈馥,刘力铭,王安培,刘福梅;无聚合物清洁压裂液的实验室研究[J];精细化工;2002年S1期
7 王建平;寸少妮;贾红娟;;低渗透油藏单井压裂增产技术综述及新进展[J];辽宁化工;2012年09期
8 朱刚卉;羧甲基纤维素钠和羟乙基纤维素在日化产品中的应用[J];日用化学品科学;2005年04期
9 丁云宏,丛连铸,卢拥军,雷群,管保山,慕立俊;CO_2泡沫压裂液的研究与应用[J];石油勘探与开发;2002年04期
10 赵谋明,叶林,李少霞,徐建祥,彭志英;黄原胶与其它食品胶协同增效作用及其耐盐稳定性的研究[J];食品与发酵工业;1999年02期
,本文编号:1946548
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1946548.html