聚丙烯酰胺类耐温抗盐聚合物的合成及其性能研究
本文选题:水溶性聚合物 + 驱油聚合物 ; 参考:《山东大学》2017年硕士论文
【摘要】:针对高温高盐油藏对驱油聚合物的要求,目前广泛使用的驱油聚合物部分水解聚丙烯酰胺由其结构原因存在的泵送时机械降解严重,剪切稳定性差,耐酸性差,耐高温高盐性差等局限性已难以满足高温高矿化度油藏的粘度要求。针对耐温耐盐聚合物的关注度日渐加重。磺酸盐型聚丙烯酰胺类耐温耐盐性高且水化能力强,采用的自由基水溶液聚合法经济安全易工业化。含有磺酸基团的2-丙烯酰胺基-2-甲基丙磺酸(AMPS)包含活泼双键,易与丙烯酰胺(AM)聚合;同时有大的支链,使聚合物主链的刚性得到较大的提高,增加聚合物的热稳定性;磺酸基团增加共聚物的水溶性和水化能力,具有较强抗温抗盐性能。在两种单体聚合体系中添加第三单体丙烯酰吗啉(ACMO)制备的聚合物中吗啉环的两亲结构和氢键作用也可有效提高聚合物的性能。丙烯酰胺类聚合过程伴随放热,仅使用某种引发剂较难提高分子链的长度,复合引发体系可以使溶液中自由基量保持较低,可以提高产品分子量。研究主要内容包含以下几个部分:1.采用自由基水溶液聚合法制备磺酸盐单体AMPS与AM的共聚物,采用不同的引发体系合成P(AM/AMPS),研究了引发剂浓度,引发剂配比,单体浓度,单体配比,引发温度,聚合体系pH值等对聚合物表观粘度的影响,测定聚合物的固含量和水解度,并通过核磁共振、红外光谱和元素分析确定样品的结构,并测试其热性质。偶氮二异丁咪唑啉盐酸盐(AIBI)/过硫酸钾(KPS)构成分段式复合引发体系,用正交试验法探寻适宜聚合条件和研究各个因素对聚合物性能的影响。在单体浓度为20%,引发剂浓度0.05%,KPS:AIBI为1:2,引发温度30 ℃下反应,聚合单体质量配比AM:AMPS为1:1,聚合体系pH为8时,在25 ℃时500 mg/L P(AM/AMPS)水溶液的表观黏度可达到110 mPa·s。β-二甲氨基丙腈(DMAPN)/KPS组成胺类氧化还原型复合引发体系,单体浓度20~25wt%,聚合单体质量配比AM:AMPS为1:1,引发剂浓度为单体浓度的0.015%,KPS:DMAPN=1.05:1(摩尔比),引发温度42℃,聚合时间为6h,聚合体系的pH值为9时,得到的聚合物有较高的水溶液表观粘度和较强的抗Ca~(2+),Mg~(2+)能力。500mg/L的聚合物水溶液在25℃下的表观黏度为96.20mPa·s,1500mg/L的聚合物的Ca~(2+)、Mg~(2+)(盐水浓度200 mg/L)盐溶液的表观黏度为36.54 mPa·s、35.61 mPa·s。N,N,N',N'-四甲基-1,6-己二胺(TMHD)/KPS组成氧化还原型双官能度复合引发体系,单体浓度为20~25 wt%,引发剂浓度为0.003%(摩尔比),聚合体系的pH值为8~9,聚合单体质量配比AM:AMPS为1:1时,引发温度为50℃,引发时间为3 h时,所得聚合物的粘度和抗盐性均较高,在32868 mg/L的矿化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃时7.34 s~(-1)剪切率下的表观粘度分别为30.09 mPa·s和18.16mPa.s。三段温控式KPS/AIBI/DMAPMA多功能复合引发体系,1500 mg/L共聚物在在32868 mg/L的矿化水中,在85 ℃时,剪切率为7.34 s~(-1)时表观粘度为18.69 mPa·s。结果表明,AMPS与AM的共聚物具有良好的抗温抗盐性能,且复合体系的使用有助于提高聚合物的性能。2.添加第三单体丙烯酰吗啉(ACMO),采用自由基水溶液聚合法,以复合引发体系制备AM/AMPS/ACMO三元共聚物,研究了引发剂浓度,引发剂配比,单体浓度,单体配比,引发温度,聚合体系pH值,ACMO添加量等对聚合物表观粘度的影响,测定聚合物的固含量和水解度,并通过核磁共振、红外光谱和元素分析确定聚合物的结构,研究了聚合物的热性质。N-(3-二甲氨基丙基)甲基丙烯酰胺(DMAPMA)/KPS组成胺基功能性复合引发体系,利用DMAPMA引发和聚合的双重作用提高聚合物的分子量,引发剂浓度为0.0010%~0.0015%,单体浓度为20wt%,引发温度为42℃,聚合反应时间为4h,ACMO为5~10wt%,聚合体系pH值为9,所得聚合物的粘度和抗盐性均较高。在32868 mg/L的矿化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃时7.34 s~(-1)剪切率下的表观粘度分别为28.59 mPa·s和16.72 mPa·s。DMAPN/KPS组成胺类氧化还原型复合引发体系,引发平稳,引发效率高,引发剂浓度为0.005%,单体浓度为25 wt%,引发温度为46~50 ℃,聚合反应时间6 h,ACMO为1%(摩尔比),聚合体系pH值为9时可提高聚合物的耐温耐盐性。在32868 mg/L的矿化水中,1500 mg/L的聚合物溶液在25 ℃和85 ℃时7.34 s~(-1)剪切率下的表观粘度分别为29.99 mPa-s和16.63 mPa·s。结果表明,第三单体ACMO的添加,复合引发体系的使用,可合成具有高的表观粘度的耐温耐盐聚合物P(AM/AMPS/ACMO)。3.研究了 P(AM/AMPS)和P(AM/AMPS/ACMO)的溶液性质,聚合物的量和NaCl、CaCl2、MgCl2的量与溶液表观粘度的相关性;频率、温度、无机盐与聚合物溶液粘弹性的相关性;聚合物溶液的抗剪切和耐温性能;聚合物溶液的抗老化性能。P(AM/AMPS)和P(AM/AMPS/ACMO)溶液在抗剪切、耐温性、抗盐性和抗老化性方面具有优异的性能。
[Abstract]:In view of the requirements of high temperature and high salt reservoirs for oil displacement polymers, the widely used polymer partially hydrolyzed polyacrylamide (PAM), which is widely used at present, is seriously degraded in mechanical degradation, poor shear stability, poor acid resistance and poor high temperature and high salt tolerance, which is difficult to meet the viscosity requirements of high temperature and high salinity reservoirs. The concentration of temperature and salt resistant polymers is becoming more and more serious. The sulfonate polyacrylamide has high temperature and salt tolerance and strong hydration ability. The free radical water solution polymerization method is easy to industrialize the economic safety. The 2- acrylamide -2- methyl propane sulfonic acid (AMPS) containing sulfonic groups contains active double bonds, easy to polymerize with acrylamide (AM); at the same time there are large branches. Chains make the rigidity of the main chain of the polymer greatly improved, and increase the thermal stability of the polymer; the sulfonic group increases the water solubility and hydration ability of the copolymer, and has a strong anti temperature and salt resistance. The two parent structure and hydrogen bond of the morpholine ring in the polymer prepared by the two monomer polymerization system with third monomer acroleyl morpholine (ACMO) It can also improve the performance of the polymer effectively. The polymerization process of acrylamide is accompanied by heat release, and it is difficult to improve the length of the molecular chain with only a certain initiator. The compound initiating system can keep the free radical of the solution low and can improve the molecular weight of the product. The main contents of the study include the following parts: 1. the free radical solution polymerization method is used. The copolymers of sulfonate monomer AMPS and AM were prepared, and P (AM/AMPS) was synthesized by different initiating systems. The effects of initiator concentration, initiator ratio, monomer concentration, monomer ratio, initiating temperature, pH value of polymerization system on the apparent viscosity of polymer and the determination of the solid content and degree of hydrolysis of polymeric substances were investigated, and NMR, IR spectra were used. Elemental analysis determines the structure of the sample and tests its thermal properties. Azo two isobutylazoline hydrochloride (AIBI) / potassium persulfate (KPS) constitutes a piecewise composite initiating system. The optimum polymerization conditions and the influence of various factors on the properties of the polymer are investigated by orthogonal test. The concentration of the monomer is 20%, the initiator concentration is 0.05%, and the KPS:AIBI is 1:2. When the temperature is 30, the mass ratio of polymerization monomer AM:AMPS is 1:1 and the polymerization system pH is 8, the apparent viscosity of 500 mg/L P (AM/AMPS) aqueous solution at 25 C can reach 110 mPa. S. beta two methylamino propanonitrile (DMAPN) /KPS to form amine oxidation and prototype compound initiating system, the monomer concentration is 20 to 25wt%, and the mass ratio AM:AMPS of polymerization monomer is equal. The initiator concentration is 0.015% of the monomer concentration, KPS:DMAPN=1.05:1 (mole ratio), the initiating temperature 42 C, the polymerization time of 6h, and the pH value of the polymerization system at 9, the polymers obtained have high apparent viscosity and strong anti Ca~ (2+), Mg~ (2+).500mg/L, the apparent viscosity of the polymer aqueous solution at 25 C is 96.20mPa s, 1500mg/L. The apparent viscosity of the polymer Ca~ (2+), Mg~ (2+) (brine concentration 200 mg/L) salt solution is 36.54 mPa. S, 35.61 mPa. S.N, N, N', and N'- four methyl hexane diamine is composed of 20~25 monomer concentration, 0.003% (mole ratio) and 8~9 polymerization system. When the monomer mass ratio AM:AMPS is 1:1, when the temperature is 50 C and the initiation time is 3 h, the viscosity and salt resistance of the obtained polymers are all high. In the 32868 mg/L mineralized water, the apparent viscosity of the 1500 mg/L polymer solution at 25 and 85 centigrade at 7.34 s~ (-1) shear rate is divided into 30.09 mPa. S and 18.16mPa.s. three stage temperature controlled KPS/AIBI/D. MAPMA multifunction composite initiating system, 1500 mg/L copolymer in the 32868 mg/L mineralized water, at 85 C, the shear rate is 7.34 s~ (-1), the apparent viscosity is 18.69 mPa. S. results show that the copolymer of AMPS and AM has good anti temperature salt resistance, and the use of the composite system helps to improve the performance of the polymer.2. adding third monomer C. ACMO, AM/AMPS/ACMO three element copolymer was prepared by a free radical water solution polymerization system. The effect of initiator concentration, initiator ratio, monomer concentration, monomer ratio, initiator temperature, pH value of polymerization system, ACMO addition and so on on apparent viscosity of polymer was studied, and the solid content and degree of hydrolysis of polymer were measured, and the content and degree of hydrolysis of polymer were determined, and the content of polymer and the degree of hydrolysis were determined. The structure of the polymer was determined by nuclear magnetic resonance, infrared spectrum and elemental analysis. The thermal properties of the polymer.N- (3- two methylamino) methyl acrylamide (DMAPMA) /KPS composed of an amine based functional compound initiating system were studied. The molecular weight of the polymer was raised by the double action of DMAPMA initiation and polymerization. The concentration of the initiator was 0.0010% to 0.001. 5%, the concentration of the monomer is 20wt%, the initiating temperature is 42, the polymerization time is 4h, the ACMO is 5 to 10wt%, the pH value of the polymerization system is 9, the viscosity and salt resistance of the polymer are all high. The apparent viscosity of the polymer solution of 1500 mg/L in the 32868 mg/L mineralized water is 28.59 mPa s and 16.72 respectively at 25 and 85 C (-1) shear rate. MPa. S.DMAPN/KPS consists of amine oxidizing and prototyping compound initiating system, which leads to stable initiation and high efficiency, initiator concentration is 0.005%, monomer concentration is 25 wt%, temperature is 46~50 C, polymerization time is 6 h, ACMO is 1% (mole ratio). When the pH value of polymerization system is 9, it can increase the temperature and salt tolerance of polymer. In 32868 mg/L mineralized water, 1 The apparent viscosity of the polymer solution at 500 mg/L at 25 and 85 C at 7.34 s~ (-1) shear rate is 29.99 mPa-s and 16.63 mPa. S., respectively. The addition of third monomer ACMO and the use of the composite initiating system can be used to synthesize the temperature and salt resistant polymer P (AM/AMPS/ACMO).3. with high apparent viscosity. O) property of solution, the amount of polymer and the correlation between the amount of NaCl, CaCl2, MgCl2 and apparent viscosity of the solution; frequency, temperature, the correlation between the viscoelasticity of the inorganic salt and the polymer solution; the shear and temperature resistance of the polymer solution; the anti aging properties of the polymer solution,.P (AM/AMPS) and the P (AM/AMPS/ACMO) solution in shear resistance, temperature resistance and salt resistance And anti aging properties have excellent performance.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ317;TE39
【相似文献】
相关期刊论文 前10条
1 延卫,李晨曦,印寿根,侯信,黄文强,何炳林;光折变聚合物材料研究进展[J];功能高分子学报;1997年03期
2 李胜方;张虹;徐蕊;冯江涛;晏石林;余剑英;;前端聚合在聚合物材料中的研究进展[J];化工新型材料;2011年07期
3 张慧麟;;聚合物合金技术的最新进展[J];化工新型材料;1993年10期
4 张秀彩,钟伟,孟晟,程为庄,杜强国;磷脂聚合物的研究进展[J];高分子通报;2004年01期
5 何凌云,张玉清,文九巴;聚合物/层状硅酸盐纳米复合材料制备方法及性能的研究进展[J];洛阳工学院学报;2001年03期
6 钟发春;贺江平;王晓川;赵小东;;聚合物材料的微波制备技术[J];热固性树脂;2006年03期
7 王孝虹;王峥;;聚合物—无机纳米复合材料的制备方法[J];广州化工;2010年01期
8 韩海军,梁淑君;聚合物/无机纳米复合材料的研究现状[J];科技情报开发与经济;2005年07期
9 ;非水分散聚合物[J];涂料工业;1975年06期
10 李春生,周春晖,李庆伟,葛忠华,李小年;聚合物/蒙脱土纳米复合材料的研究进展[J];化工生产与技术;2002年04期
相关会议论文 前2条
1 陈苏;;前端聚合法快速制备聚合物材料方法学的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
2 杨瑞成;陈奎;冯辉霞;羊海棠;;聚合物/蒙脱土纳米复合材料的特征与进展[A];纳米材料和技术应用进展——全国第三届纳米材料和技术应用会议论文集(下卷)[C];2003年
相关重要报纸文章 前1条
1 本报记者 郑璐;聚合物:摇篮到坟墓全程生态化[N];中国化工报;2012年
相关博士学位论文 前4条
1 解晓华;某些聚合物光电材料的理论计算[D];西南大学;2012年
2 刘乐平;磷酸基地质聚合物的反应机理与应用研究[D];广西大学;2012年
3 孙明波;聚合物/粘土/碱金属离子插层复合物结构与性能研究[D];山东大学;2005年
4 邱桂花;超声辐照制备具有电磁功能的聚合物/无机纳米复合材料[D];四川大学;2006年
相关硕士学位论文 前10条
1 严文瀚;聚合物水动力尺寸及注入界限研究[D];中国科学院研究生院(渗流流体力学研究所);2015年
2 邢书银;利用粉煤灰制备地质聚合物的实验研究[D];青海大学;2016年
3 刘梦怡;失效磷酸基抛光液制备地质聚合物的合成、结构和性能表征[D];广西大学;2014年
4 王笑颜;共轭微孔聚合物的可控合成及其相关性能的研究[D];陕西师范大学;2016年
5 闵敬丽;聚丙烯酰胺类耐温抗盐聚合物的合成及其性能研究[D];山东大学;2017年
6 阳庆元;聚合物导热系数的模型化研究[D];北京化工大学;2001年
7 楼思斌;水溶性炔丙酰胺聚合物的设计、合成与表征[D];北京化工大学;2009年
8 徐夏梦;部分聚合物定量结构—性质关系研究[D];陕西科技大学;2013年
9 牛小龙;新型稠环聚合物和蓝光聚合物的合成及其光电性能研究[D];华南理工大学;2014年
10 佘希林;熔融挤出法制备聚合物/蒙脱土纳米复合材料的研究[D];青岛大学;2002年
,本文编号:1969218
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1969218.html