高频电聚结式油气水三相流分离器的仿真研究
本文选题:高频 + FLUENT ; 参考:《中国石油大学(华东)》2015年硕士论文
【摘要】:目前,随着油田的不断深入开采,一些油田已经进入“三次采油”时期。受“三次采油”的影响,原油采出液的含水率不断升高,乳化液中破乳剂、高聚合物的含量也不断提高,使得原油脱水处理的难度不断加大。油田上现有的三相分离器已经无法有效的解决原油高含水问题,常规电脱水器极易发生“倒电场”现象、运行不稳定,急需新的脱水技术。因此,研制一种适用范围广、脱水效果好、运行稳定性高的分离器具有十分重要的意义。为了解决油田上遇到的脱水难题,本文设计了一种高频电聚结式油气水三相流分离器。该分离器将传统的三相分离器和电脱水器相结合,采用高频矩形波脱水电源,属于一种“三合一”式三相流分离器,能够同时进行旋流分离、重力沉降分离、电脱分离。为了分析分离器的分离效果,优化罐体结构,本文采用FLUENT软件分别对分离筒、罐体及聚结填料的内部流场进行了模拟仿真。分离筒的模拟结果表明,原油采出液在分离筒内形成旋流分离,且98%的气相被分离出来;随着处理量的增加,流体更容易产生旋流运动,但分离效果变差,当处理量低于设计值的0.8倍时,原油在分离筒内无法形成旋流分离。罐体的模拟结果表明,含水95%的原油在罐体内产生分离,分离后原油含水率低于10%;采用圆弧堰板时可以消除堰板直角接头处产生的囤油现象。聚结填料的模拟结果表明,不同结构参数的聚结填料对罐体内部流场的影响不同,其中折角为30°、形状为三角形的聚结填料内部流场较其它结构参数的聚结填料理想。在论文的最后,采用自行设计搭建的电脱水实验装置,结合实际生产分别进行了静态和动态电脱实验。实验研究结果表明,脱水的最佳温度应不小于原油粘温曲线的拐点温度,且温度对脱水效果的影响比脱水时间明显。
[Abstract]:At present, with the further development of oil fields, some oilfields have entered the stage of "tertiary oil recovery". Under the influence of "tertiary oil recovery", the water cut of crude oil produced liquid is increasing, the demulsifier in emulsion and the content of high polymer are also increasing, which makes the dehydration of crude oil more difficult. The existing three-phase separator in oil field can not effectively solve the problem of high water cut of crude oil. The phenomenon of "inverted electric field" is easy to occur in conventional electric dehydrator, and the operation is unstable, so new dehydration technology is urgently needed. Therefore, it is of great significance to develop a separator with wide application range, good dehydration effect and high operation stability. In order to solve the problem of dehydration in oil field, a high frequency electric coalescence three phase flow separator for oil, gas and water is designed in this paper. The separator combines the traditional three-phase separator with the electric dehydrator, and adopts the high-frequency rectangular wave dehydration power supply. It belongs to a "three-in-one" three-phase flow separator, which can separate the swirling flow, the gravity settlement separation, and the electric de-separation simultaneously. In order to analyze the separation effect of the separator and optimize the structure of the tank, the internal flow field of the separator, tank and agglomeration filler was simulated by FLUENT software. The simulation results of the separation tube show that the liquid produced from crude oil forms a swirl separation in the cylinder, and 98% of the gas phase is separated out. With the increase of the treatment amount, the fluid is more likely to produce swirl motion, but the separation effect becomes worse. When the processing capacity is less than 0.8 times of the designed value, the swirl separation of crude oil can not be formed in the separation cylinder. The simulation results show that 95% of the crude oil with water is separated in the tank, and the moisture content of the crude oil is lower than 10% after separation, and the phenomenon of oil hoarding at the right joint of the Weir plate can be eliminated when the arc Weir plate is used. The simulation results show that the effect of different structure parameters on the flow field is different, in which the angle of folding is 30 掳and the shape of triangle is better than that of other structural parameters. At the end of the thesis, the static and dynamic electrical dewatering experiments were carried out by using the electric dehydration experimental device designed by ourselves and combined with the actual production. The experimental results show that the optimum temperature of dehydration should not be less than the inflection point of the viscosity temperature curve of crude oil, and the effect of temperature on the dehydration effect is more obvious than that on dehydration time.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE937
【参考文献】
相关期刊论文 前10条
1 牛俊邦;王建军;曾雄飞;;一种新型的实验室用老化油电脱水装置[J];机电产品开发与创新;2013年06期
2 王力群;倪玲英;郑亚文;张洋洋;;波纹板内流场模拟计算分析[J];化工机械;2013年02期
3 王建军;王兆坤;;变频脉冲电脱电源应用于老化原油脱水实验[J];机电产品开发与创新;2012年04期
4 关克明;金昱俊;毛志高;崔建军;康文翠;李瑛;陈康林;;三相分离器技术的应用及效益评价[J];石油化工应用;2010年06期
5 樊伟平;滕立志;李玉平;;采油新技术的研究应用[J];内蒙古石油化工;2010年01期
6 肖蕴;赵军凯;许涛;刘树文;王宏智;;原油电脱水器技术进展[J];石油化工设备;2009年06期
7 刘东杰;;胜利油田原油脱水现状探讨[J];胜利油田职工大学学报;2009年05期
8 王学彬;;含油废水及其处理技术的研究进展[J];化工时刊;2008年11期
9 胡晓林;刘红兵;;几种油水分离技术介绍[J];热力发电;2008年03期
10 牛国新;王育欣;姜国强;;油水分离控制系统设计与应用[J];装备制造技术;2008年03期
相关会议论文 前1条
1 刘亚莉;吴山东;戚俊清;;聚结材料对油品脱水的影响[A];2006年石油和化工行业节能技术研讨会会议论文集[C];2006年
相关硕士学位论文 前10条
1 刘士雷;三相分离器设计及流场研究[D];吉林大学;2012年
2 周杰联;径向喷射规整旋流分离器的实验研究[D];华中科技大学;2012年
3 王超;卧式油气水三相分离器的流场研究[D];吉林大学;2011年
4 刘倩倩;基于PLC的矩形波交流原油脱水电源的研究[D];中国石油大学;2010年
5 周彬;油田原油电脱水自动化改造方案设计[D];中国石油大学;2009年
6 黄欣;矩形波交流原油脱水电源的研究[D];中国石油大学;2007年
7 丰大成;高效分离器油气水分离研究[D];中国石油大学;2007年
8 司先锋;在役联合站集输系统主体设备节能降耗改进方法研究[D];西南石油大学;2006年
9 马健伟;电脱水器垮电场原因分析及解决措施[D];大庆石油学院;2005年
10 王敏;一种波纹板聚结油水分离器的研制[D];华中科技大学;2004年
,本文编号:1972082
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1972082.html