振荡冲击器研究与应用
[Abstract]:With the increasing proportion of complex structural wells such as horizontal wells and extended reach wells in the exploration and development of oil and gas fields, a series of problems have been brought about, such as low penetration rate, difficult control of borehole trajectory, underpinning pressure of drilling tools and irregular boreholes. A few companies have mastered the key technology of oscillatory impactor tools. The domestic research on oscillatory impactor tools is still in its infancy. In this paper, the oscillator impactors are studied from the aspects of tool structure design, working principle, working characteristics, rock breaking mechanism, friction reduction mechanism, tool trial-manufacture and tool ground and field test analysis. The research and application of the tool are of great significance to the research and application of the tool in China. (1) The tool structure of the oscillator impactor is designed, including the vibration assembly, the power assembly and the valve shaft assembly. By controlling the periodic change of the flow area, the hydraulic energy can be transformed into the mechanical energy of the axial vibration of the tool, and the axial vibration of the downhole tool in series with the oscillating impactor can be excited to achieve the purpose of reducing friction and drag. Mathematical and physical models of water hammer and longitudinal vibration of the oscillating impactor are developed by using VB6.0. The calculation shows that the water hammer of the oscillating impactor will produce an additional dynamic impact load on the bottom hole rock. The action form of the dynamic load is positive (cosine) curve, the peak value of the dynamic load and the maximum and the maximum of the oscillating impactor. The frequency of the dynamic load is related to the rotational speed of the dynamic part of the oscillating impactor and the displacement of drilling fluid; the working state of the oscillating impactor at the bottom of the well is a single degree of freedom forced vibration with damping, and the steady-state response of the system excited by the simple harmonic water hammer is also simple harmonic, and the vibration frequency is equal to the frequency of the water hammer excitation. There is a phase difference between water hammer excitation and vibration response_. The input work of water hammer excitation is equal to that of friction damping in a period. (2) By studying the working characteristics of the tool, the composite rock breaking mode with the combination of dynamic and static loads as the main method and with the assistance of negative pressure pulse jet is established. The rock-breaking process is studied in this paper. The rock-breaking efficiency of the tool under different rock, different working frequency and different peak load conditions is studied. The rock-breaking efficiency of the tool is the highest at 16Hz. The rock-breaking efficiency increases with the increase of the peak impact dynamic load of the tool. The tool is compared with conventional rotary drilling and rotary percussion drilling in detail, which provides theoretical basis for the optimization of tool structure and the establishment of corresponding drilling technology. (3) The variation law of frictional resistance of horizontal well drilling string under the action of oscillating percussion drilling is studied, and the vibration friction mechanics model is established. It is pointed out that the reduction of effective friction coefficient is the fundamental reason why the vibration friction force is less than the maximum static friction force in the process of vibration friction, and that the change of static friction into vibration friction is the key to reduce friction and friction of the oscillating impactor. Friction factors include friction coefficient, drilling parameters and drilling tool assembly, among which friction coefficient is relatively large; the basic criterion for placement of oscillatory impactors is that the vibration force provided by them can overcome the maximum static friction resistance from the oscillatory impactor to the bit, and multiple oscillatory impactor tools are installed. (4) The tensile strength and torsional strength of the tool are checked, and the trial production of the tool is completed, and the drilling tool assembly is recommended. In vertical wells, the oscillatory impactor should be as close to the bit as possible, and in horizontal wells, the oscillatory impactor can be located on MWD. In the same drill string combination, several sets of oscillatory impactor tools can be connected in series under the condition of satisfying the design of field hydraulic parameters. (5) A ground test and three field tests have been carried out to verify the reliability and effectiveness of the tool. The operating frequency of the oscillatory impactor is proportional to the screw speed. The working pressure drop is about 3-4 MPa, the amplitude is 9-12 mm, and the water hammer force is greater than 100 kN@27L/s. The point contact TC bearing and the tungsten carbide valve plate group are beneficial to prolong the tool life. The strength of the oscillator impactor tool body meets the requirements of the field working conditions. The tool has no interference to the MWD signal and will not cause any other downhole tools connected in series. The installation mode of the vibrating short section disc spring determines that the tool works under tension or compression, and the two-way vibrating short section can work under both compression and tension. The average penetration rate of the section using the vibrating impactor is 38.4% higher than that of the section without the vibrating impactor.
【学位授予单位】:西南石油大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TE927
【相似文献】
相关期刊论文 前10条
1 Л·С·康斯坦季婠夫;魏柳泉;;美国生产的风动冲击器[J];重型机械;1964年14期
2 А.А.别列古道夫;使用振动冲击器降低钻探成本[J];探工零讯;1965年03期
3 伍时桂;射流冲击器运动的理论分析[J];力学与实践;1980年03期
4 凌才;;C—150型冲击器的改进[J];有色金属(矿山部分);1981年01期
5 穆纪泽,蒋荣庆;液动冲击器的性能分析[J];探矿工程;1982年03期
6 杨光武;;水力冲击器的理论计算[J];凿岩机械与风动工具;1982年03期
7 张国忠;;风动碎石冲击器[J];矿山机械;1984年06期
8 А·Д·科斯特列夫;王明和;;钻进地质钻探孔用的新式环形潜孔风动冲击器[J];国外采矿技术快报;1985年24期
9 廖国平;射吸式冲击器的应用效果[J];探矿工程;1988年06期
10 刘海国;;潜孔冲击器的回收使用[J];凿岩机械与风动工具;1988年03期
相关会议论文 前5条
1 蒋宏伟;黄成;王克雄;翟应虎;倪瑞庆;;射吸式液动冲击器内部流场数值模拟研究[A];2007年石油装备学术研讨会论文专辑[C];2007年
2 丁问司;;氮爆式液压冲击器系统性能实验研究[A];液压与气动学术研讨会论文集[C];2004年
3 丁问司;;氮爆式液压冲击器系统性能实验研究[A];第三届全国流体传动及控制工程学术会议论文集(第三卷)[C];2004年
4 鄢泰宁;H.Г.叶戈罗夫;蒋国盛;吴翔;卢春华;王荣景;;用于回转冲击钻进的钢球冲击器结构分析及其试验效果[A];第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C];2005年
5 蒋荣庆;栾桂林;庞友同;;液动流射式冲击器应用于超深井的模拟试验[A];第四届全国岩石破碎学术讨论会论文集[C];1989年
相关重要报纸文章 前2条
1 马占云 王文立;旋冲钻井研究取得新进展[N];中国石化报;2010年
2 刘爱顺邋金军斌;粒子图像测速技术加速“863”项目攻关进程[N];中国石化报;2007年
相关博士学位论文 前9条
1 董学成;振荡冲击器研究与应用[D];西南石油大学;2015年
2 李峰飞;孔底电动冲击器控制系统研究[D];中国地质大学;2010年
3 陈宝义;地下穿孔液压冲击器的研究与设计[D];吉林大学;2005年
4 丁问司;新型压力反馈氮爆式机电一体化液压碎石冲击器系统研究[D];中南大学;2000年
5 杨国平;全液压独立无级调频调能液压冲击器的研究[D];中南大学;2000年
6 许勤;液压冲击器系统性能的测试与分析[D];南京农业大学;2009年
7 卢春华;节水型回转冲击钻具结构设计与钻进机理研究[D];中国地质大学;2007年
8 陈家旺;射流式液动冲击器仿真计算与实验研究[D];吉林大学;2007年
9 王清岩;基于虚拟样机技术的动压反馈式液动冲击器结构设计与动态仿真分析[D];吉林大学;2008年
相关硕士学位论文 前10条
1 张元志;射吸式液动冲击器的优化设计[D];西安石油大学;2015年
2 刘昀波;专用汽车配套的液压冲击器建模仿真与优化研究[D];上海工程技术大学;2015年
3 鄢光红;液动扭力冲击器动力冲击装置模型的研究[D];新疆大学;2015年
4 齐列锋;新型液压式扭力冲击器设计与动力仿真[D];长江大学;2016年
5 齐厚博;利用MEMS惯性冲击器进行安全壳内气溶胶过滤的机理研究[D];华北电力大学(北京);2016年
6 赵迪;液压冲击器特性及其控制策略研究[D];辽宁工程技术大学;2014年
7 朱永豪;扭力冲击器的工作机理与实验研究[D];西南石油大学;2016年
8 彭金艳;无阀自配流液压冲击器动态建模与电液控制方法研究[D];湖南师范大学;2010年
9 李文汇;电磁冲击器电磁场仿真与分析[D];昆明理工大学;2009年
10 薛二鹏;电磁冲击器阀芯动力学特性研究[D];昆明理工大学;2009年
,本文编号:2190755
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2190755.html