射吸式液动冲击器的优化设计
[Abstract]:In drilling process, drilling speed plays a decisive role in shortening drilling cycle. Rotary percussive drilling can be realized by using suction hydraulic impactor, which can greatly improve the drilling speed, shorten the drilling time and reduce the investment of funds. The injection-suction hydraulic impactor can transform the pressure energy of drilling fluid into mechanical energy. Under the combined action of static pressure of drill bit, rotary cutting and vertical impact dynamic load, rapid and efficient rock breaking can be realized. The main research work of this paper is as follows: according to the working principle of hydraulic impactor, the advantages and disadvantages of different kinds of hydraulic impactor are summarized, and the relatively few torsion impactors are simply analyzed. Based on the analysis of the working process of the impactor, the dynamic equation is established with the piston hammer as the main object of study, and the equations of motion and displacement are derived, and the relations among the parameters are found. The equipment and process of indoor test are introduced. At the end of stroke, the suction hydraulic impactor opens the channel and forms the pressure difference (the lower cavity pressure is greater than the upper cavity pressure). Pro/E software is used to set up the flow channel solid model at the end of stroke, and Gambit is used to mesh and import it into Fluent software for analysis. The variation law of pressure difference is studied by changing nozzle diameter, throttle ring diameter and flow rate by single variable method. It is concluded that the larger flow rate of nozzle and throttle ring with smaller inner diameter can form greater pressure difference. The flow field of the nozzle with conic and cubic curves in the upper cavity is analyzed. For the secondary busbar nozzle, the pressure of the upper cavity flow field is lower when the parameter 胃 is relatively small, and the static pressure of the nozzle D (胃 ~ (30 掳) is the lowest at the upper end of the valve and the upper end of the piston. The above analysis and research is helpful to improve the performance of the impactor.
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE921.2
【参考文献】
相关期刊论文 前9条
1 菅志军,张玉霖,王茂森,戴树林;冲击旋转钻进技术新发展[J];地质与勘探;2003年03期
2 张祖培;蒋荣庆;;苏联液动冲击回转钻进近况[J];国外地质勘探技术;1984年04期
3 赵洪激;彭高华;;阀式正作用液力冲击钻具的研究[J];石油矿场机械;1992年02期
4 陈朝达,高建强,郝建华,吴秀娟;射吸式双作用油井深井冲击器设计[J];石油矿场机械;1999年06期
5 菅志军,张文华,刘国辉,崔颖;石油钻井用液动冲击器研究现状及发展趋势[J];石油机械;2001年11期
6 蒋宏伟;黄成;王克雄;翟应虎;倪瑞庆;;射吸式液动冲击器内部流场数值模拟研究[J];石油机械;2007年09期
7 李国民;双作用液动冲击器仿真电算数学模型[J];探矿工程(岩土钻掘工程);1997年04期
8 陈晶晶;陈家旺;殷琨;;冲击器射流元件内部流场CFD模拟仿真分析[J];探矿工程(岩土钻掘工程);2008年12期
9 袁光杰,姚振强,黄万志,陈平;石油背压式液动冲击器动力学模型的建立[J];天然气工业;2003年04期
相关博士学位论文 前1条
1 陈家旺;射流式液动冲击器仿真计算与实验研究[D];吉林大学;2007年
相关硕士学位论文 前10条
1 梁家玮;液动冲击器测试实验台设计和研建[D];中国地质大学(北京);2011年
2 胡玉仙;基于FLUENT软件的泵站进出水流道流动模拟研究[D];武汉大学;2004年
3 鹿胜玉;基于FLUENT的抽油泵泵效的仿真研究与优化[D];山东大学;2008年
4 梁翠平;基于CFD的液压冲击器流场的仿真与研究[D];上海工程技术大学;2011年
5 李博;阀式双作用液动冲击器的仿真[D];中国地质大学(北京);2013年
6 陈克鑫;基于FLUENT的固井单向阀流场仿真与性能分析[D];哈尔滨工业大学;2012年
7 曹寒冰;基于FLUENT的前混合磨料射流喷嘴流场的数值模拟[D];安徽理工大学;2013年
8 臧鹏;液动冲击钻具数字化设计与仿真研究[D];西安石油大学;2013年
9 毛子强;基于FLUENT的外啮合斜齿轮泵内部流场的仿真与分析[D];兰州理工大学;2014年
10 谢天;高频轴向液动冲击器破岩机理及试验分析[D];东北石油大学;2014年
,本文编号:2206198
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2206198.html