当前位置:主页 > 科技论文 > 石油论文 >

管道内检测器极低频跟踪定位系统研制

发布时间:2018-10-05 08:50
【摘要】:管道是现代石油、天然气等能源运输的主要方式之一,被称为世界的“能源血脉”。随着经济发展的需求,我国石油化工与政府部门所铺设管线数量急剧增长,但因材质、施工或腐蚀等因素导致的管道损伤,严重威胁了管道的有效运行,一旦出现危险,后果将非常严重,不但污染环境,甚至威胁人类生命财产安全。因此,对管道进行定期检测与维护、保障管道的安全有效运行十分必要。管道内检测器跟踪定位技术可实现实时监测管道内检测器的运行状态和实时位置,是管道无损检测工程应用的必要条件。本文主要针对管道内检测器在运行过程中的跟踪定位问题,分析了当前国内外管道内检测器跟踪定位技术现状,分析了极低频信号的传播特性和发射线圈的磁场分布特点。依据发射线圈磁场对称分布特性,设计了搭载在管道内检测器上的极低频磁信号发射机和极低频磁信号接收机。发射机主要由主控电路、功率放大电路以及发射线圈组成;发射线圈采用高磁导率坡莫合金管作为磁芯,有效减少涡流损耗,采用串联谐振形式提高信号发射效率;接收机主要包括接收线圈、信号调理电路和液晶显示等部分,设计了感应式接收线圈,通过并联谐振形式提高接收机信号接收范围,提高信噪比。管道内检测器跟踪定位系统主要利用发射机产生幅值恒定、频率稳定的电压信号源,通过功率放大电路加载到发射线圈,在空间建立电磁场。变化的电磁信号透过管道及其所处环境的介质,被位于表面的接收线圈接收,经过信号调理电路,提取所需信号信息,实现对管道内检测器跟踪定位的目的。本文详细分析了管道内检测器跟踪定位系统各部分的工作性能,通过不同实验证明了系统的工作效果。实验结果表明,该跟踪定位系统具有良好的稳定性和可靠性,接收信号具有对称特性。在埋地管道实验中,该系统有效定位距离可达8米,提高了管道内检测器跟踪定位范围。
[Abstract]:Pipeline is one of the main ways of transportation of modern oil and natural gas, which is called the "blood of energy" in the world. With the demand of economic development, the number of pipelines laid by petrochemical industry and government departments in our country has increased rapidly. However, the pipeline damage caused by materials, construction or corrosion has seriously threatened the effective operation of pipelines. The consequences will be very serious, not only to pollute the environment, but also to threaten the safety of human life and property. Therefore, it is necessary to carry out regular inspection and maintenance to ensure the safe and effective operation of the pipeline. The tracking and locating technology of the detector in pipeline can realize the real-time monitoring of the running state and the real time position of the detector in the pipeline, which is the necessary condition for the application of pipeline nondestructive testing engineering. In this paper, aiming at the problem of tracking and locating the detector in the pipeline during operation, the present situation of the tracking and locating technology of the detector in the pipeline at home and abroad is analyzed, and the propagation characteristics of the very low frequency signal and the distribution of the magnetic field of the transmitting coil are analyzed. According to the symmetrical distribution of the magnetic field of the transmitting coil, a very low frequency magnetic signal transmitter and a very low frequency magnetic signal receiver are designed. The transmitter is mainly composed of main control circuit, power amplifier circuit and transmitting coil. The high permeability permalloy tube is used as the core of the transmitter, which effectively reduces the eddy current loss and improves the signal transmission efficiency by series resonance. The receiver mainly includes receiving coil, signal conditioning circuit and liquid crystal display. Inductive receiving coil is designed to improve the receiving range and signal-to-noise ratio (SNR) of the receiver by parallel resonance. The detector tracking and positioning system in the pipeline mainly uses the transmitter to produce the constant amplitude and stable frequency voltage signal source, which is loaded into the transmitting coil through the power amplifier circuit, and establishes the electromagnetic field in the space. The changing electromagnetic signal is received by the receiving coil located on the surface through the medium of the pipeline and its environment. After the signal conditioning circuit, the needed signal information is extracted, and the purpose of tracking and locating the detector in the pipeline is realized. In this paper, the working performance of each part of the system is analyzed in detail, and the effect of the system is proved by different experiments. The experimental results show that the tracking and positioning system has good stability and reliability, and the received signal has symmetrical characteristics. In the experiment of buried pipeline, the effective location distance of the system is up to 8 meters, and the tracking range of the detector in the pipeline is improved.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE973.6

【参考文献】

相关期刊论文 前10条

1 杨理践;耿浩;高松巍;;长输油气管道漏磁内检测技术[J];仪器仪表学报;2016年08期

2 魏明生;童敏明;张春亚;夏静;;管道清堵机器人电磁定位系统[J];工矿自动化;2016年06期

3 臧延旭;邱城;胡铁华;杨寒;;管道内检测器里程轮打滑原因[J];油气储运;2016年03期

4 郭静波;谭博;蔡雄;;基于反相双峰指数模型的微弱瞬态极低频信号的估计与检测[J];仪器仪表学报;2015年08期

5 李海;于文莉;林忠海;王智晓;;麦克斯韦方程组及其电磁场特性分析[J];电子技术与软件工程;2015年13期

6 李一博;周纯瑶;刘双赛;祝慧宇;孙立瑛;;基于声传感阵列的地面标记信号增强方法(英文)[J];纳米技术与精密工程;2015年02期

7 郭静波;蔡雄;胡铁华;张志文;;油气管道中智能机器人跟踪定位关键技术综述[J];仪器仪表学报;2015年03期

8 邱贺;段永红;;用于感应式磁传感器低噪声前置放大器的研制[J];仪表技术与传感器;2015年01期

9 蔡红华;聂万胜;丰松江;车学科;;表面波放电狭缝天线辐射电磁场的三维数值分析[J];微波学报;2014年05期

10 刘梦然;张国军;简泽明;刘宏;张文栋;;管道内检测器声定位技术研究[J];传感技术学报;2014年04期



本文编号:2252756

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2252756.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户befcc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com