当前位置:主页 > 科技论文 > 石油论文 >

油砂沥青临氢供氢降黏改质研究

发布时间:2018-12-13 01:32
【摘要】:随着石油开采技术的不断提高,非石油资源的开发和利用比例增大。类似加拿大油砂沥青这种储量非常丰富的非石油资源逐渐受到研究者们的关注,但其组成复杂、黏度高、金属杂原子含量高和残炭值高,使得该资源的运输存在着严重困难,因此选择合适的工艺进行改质输送是一个值得研究的课题。本文针对油砂沥青常压渣油进行减黏改质、临氢降黏改质以及临氢供氢降黏改质的研究,为开发油砂沥青临氢供氢降黏改质技术提供基础数据。分别考察了反应条件对几种工艺改质油性质的影响,参照380#燃料油的输送标准筛选出合适的油砂沥青临氢供氢改质的工艺条件。同时揭示了氢气和供氢剂在油砂沥青临氢供氢降黏改质中的协同作用机制。油砂沥青常压渣油通过减黏改质,黏度降低,改质油安定性太差,不能够进行长距离的管输船运。但是油砂沥青常压渣油通过临氢降黏改质之后,黏度和安定性均能满足管输船运的要求,而且oAPI也有所提高。优化的临氢降黏改质工艺条件为420oC、10min,在此条件下,改质油的黏度为375.35mm~2/s,oAPI提高1.5个单位,到达13.3。利用化学探针法对供氢馏分油DA、DB进行了氢转移指数的确定。结果表明:供氢馏分油DB的氢转移能力大于DA,而且确定了DB的最佳掺入量为5%。油砂沥青常压渣油临氢供氢试验结果表明:临氢供氢降黏反应更有利于油砂沥青常压渣油的改质效果,改质油安定性和oAPI也有所提高,生焦量减少。优化的临氢供氢降黏改质的工艺条件为420oC、15min。在此条件下,改质油的黏度为198.48mm~2/s,oAPI可达15.4。最后,对氢气和供氢剂在油砂沥青热改质中的协同作用进行研究。研究发现,氢气的存在能使供氢剂的供氢能力增大。而且二者的加入会改变产物分布,减少重组分的生成。临氢供氢是通过提高反应的表观活化能,抑制反应速率,来保证反应可以在更高的苛刻度下进行,在保证产物安定性等质量合格的前提下,最大限度的降低黏度。
[Abstract]:With the continuous improvement of petroleum exploitation technology, the proportion of non-oil resources development and utilization increases. The non-petroleum resources, which are rich in oil sand asphalt in Canada, have been paid more and more attention by researchers. However, their complex composition, high viscosity, high content of metal heteroatoms and high carbon value make the transportation of this resource very difficult. Therefore, it is worth studying to select the appropriate process to carry out the modified transportation. In this paper, the viscosity reduction modification, hydrogen viscosity reduction and hydrogen supply viscosity reduction modification of oil sand asphalt atmospheric residue are studied, which provides basic data for the development of oil sand asphalt hydrogen supply hydrogen viscosity reduction modification technology. The effects of reaction conditions on the properties of several kinds of modified oil were investigated respectively. According to the transportation standard of 380# fuel oil, the suitable process conditions for hydrogen supply of oil sand asphalt were selected. At the same time, the synergistic mechanism of hydrogen and hydrogen donor in hydrogen supply and viscosity reduction of oil sand asphalt was revealed. Oil sand asphalt atmospheric pressure residuum can not carry out long distance pipeline transportation because of its low viscosity and poor stability. However, the viscosity and stability of oil sand asphalt atmospheric pressure residuum can meet the requirements of pipeline transportation, and the oAPI is also improved. The optimized process conditions for hydrogen viscosity reduction and upgrading are 420oC ~ (10) min, and the viscosity of modified oil is 375.35mm / 2 / s ~ (-1) / s ~ (-1) API, which is increased by 1.5 units to 13.3 units. The hydrogen transfer index of hydrogen supplying distillate oil DA,DB was determined by chemical probe method. The results show that the hydrogen transfer capacity of DB is higher than that of DA, and the optimum blending amount of DB is 5. The results of hydrogen supply test on atmospheric residual oil of oil sand asphalt show that the viscosity reduction reaction of atmospheric pressure residuum from oil sand asphalt is more favorable to the improvement of oil sand asphalt atmospheric pressure residuum, the stability of modified oil and oAPI are also improved, and the amount of coke generation is reduced. The optimized condition of hydrogen supply for viscosity reduction and modification is 420oC ~ (2 +) for 15 min. Under this condition, the viscosity of the modified oil is 198.48mm / 2 / sg / s API up to 15.4. Finally, the synergistic effect of hydrogen and hydrogen donor in asphalt thermal upgrading of oil sand was studied. It is found that hydrogen can increase the capacity of hydrogen donor. And the addition of the two will change the distribution of products and reduce the formation of recombination fractions. Hydrogen donor is to increase the apparent activation energy of the reaction, inhibit the reaction rate, to ensure that the reaction can be carried out in a higher degree of rigor, under the premise of ensuring the quality of the product stability, and reduce the viscosity to the maximum extent.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE624

【相似文献】

相关期刊论文 前10条

1 张荣军;李海军;任月玲;;塔河油田深层稠油掺稀降黏技术[J];西安石油大学学报(自然科学版);2009年03期

2 齐义彬;王大威;吴萌萌;李国强;吕鑫;马挺;;胶质降解和生物乳化在稠油降黏中的作用[J];石油学报;2012年04期

3 鄢宇杰;李永寿;邱小庆;;塔河油田掺稀降黏技术研究及应用[J];石油地质与工程;2012年06期

4 潘斌林;;草桥稠油热-氧化降黏规律[J];承德石油高等专科学校学报;2012年04期

5 刘彩玉;刘永斌;李枫;;聚合物污水配制液的微波降黏[J];油气田地面工程;2012年09期

6 康宏;李盛贤;吴桐;李梓木;杨光;王靖然;;应用于微生物三次采油的细菌降黏实验研究[J];黑龙江医药;2007年06期

7 梅春明;李柏林;;塔河油田掺稀降黏工艺[J];石油钻探技术;2009年01期

8 武盈;张淑荣;蒋博;张鹏;;一株微生物驱链球菌石油降黏的研究[J];北京化工大学学报(自然科学版);2009年S1期

9 樊泽霞;王腾飞;何玉海;;离子液体对稠油的改质降黏作用影响因素研究[J];燃料化学学报;2009年06期

10 王顺华;尚庆军;周先军;;新型密闭热载体循环降黏工艺参数研究[J];石油钻采工艺;2010年06期

相关会议论文 前2条

1 王晓娥;黄远;;稠油井化学降黏工艺优化决策数学模拟[A];第九届全国渗流力学学术讨论会论文集(二)[C];2007年

2 王建军;林凯;王新虎;申昭熙;;掺稀降黏作业中油管挤毁事故分析[A];中国力学学会学术大会'2009论文摘要集[C];2009年

相关重要报纸文章 前4条

1 罗建东 通讯员 韩建栋;降黏新技术现场试验首获成功[N];中国石油报;2007年

2 特约记者 焦芳捷 焦念友;长效降黏技术高效开发稠油[N];中国化工报;2011年

3 任厚毅;胜利油田一项“863”项目通过科技部验收[N];中国石化报;2010年

4 张明江 杨东辉;电加热降黏工艺“热”了稠油开发[N];中国石化报;2010年

相关硕士学位论文 前3条

1 周莹;油砂沥青供氢热裂化降黏改质研究[D];中国石油大学(华东);2015年

2 刘进东;油砂沥青临氢供氢降黏改质研究[D];中国石油大学(华东);2015年

3 高占胜;低渗透油藏就地自生气助排降黏技术适应性研究[D];西安石油大学;2011年



本文编号:2375620

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2375620.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0c92b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com