基于模式识别技术的条形码识别方法研究及应用
[Abstract]:At present, the material management work of oil field basically depends on the material management system, and the most important link in the material management system is the bar code scanning function. The speed and accuracy of barcode scanning are seriously affected by the weather and oil field environment, which leads to the inefficiency of material management. Especially in the case of a large number of tools, often seriously affect the circulation of tools, resulting in the loss of enterprises. This paper improves barcode recognition technology based on pattern recognition technology and analyzes and solves the problem that barcode image can not be recognized because of tilt noise and dirty pollution. Through simulation and practical test, the design can effectively improve the barcode recognition technology and make the oil field material management more efficient and automatic. The main contents of this paper are as follows: (1) Image tilt correction based on Hough transform: for the scanned skew bar code image, this paper adopts the image tilt correction method based on Hough transform. It can solve the problem that barcode can not be recognized because of image tilt. (2) improved median filter algorithm based on support vector machine: for the noise problem of barcode image, this paper first uses median filter algorithm to deal with barcode image. By using median filtering algorithm to process barcode images, the black and white isolated noise points on barcode images can be removed. Then, aiming at the advantages and disadvantages of median filtering algorithm, the advantages and disadvantages of SVM image filter denoising algorithm and the characteristics of salt and pepper noise, this paper adopts the method based on support vector machine to improve the median filtering algorithm. The simulation results show that the proposed algorithm can eliminate salt and pepper noise more effectively, and the processing results have higher SNR. (3) Ostu algorithm based on adaptive threshold selection. Firstly, Ostu algorithm and Bernsen algorithm are used to process images. According to the actual situation of oil field and comparing the processing effect and running time of the two algorithms, this paper selects Ostu algorithm to deal with barcode image. Then the Ostu algorithm is improved because the running time of Ostu algorithm can not meet the requirement of oil field material management. In this paper, the adaptive threshold selection method is used to improve the Ostu algorithm. The result of the improved algorithm shows that the improved algorithm can speed up the processing time and improve the working efficiency.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE4;TP391.4
【参考文献】
相关期刊论文 前10条
1 王琼;康凯;朱永波;;基于条形码跟踪管理系统的模式识别技术研究及应用[J];自动化与仪表;2016年08期
2 靳佳澍;;一种针对彩色二维码图像的二值化方法[J];科技与企业;2016年04期
3 孙茂芬;卢道华;李忠国;王佳;;海上监控图像的海天线及其目标区域提取[J];机械工程师;2016年02期
4 朱黎辉;李晓宁;;基于多特征组合的球形果蔬智能分选方法[J];计算机工程与应用;2016年05期
5 冯欣悦;杨秋翔;安雁艳;范建华;杨剑;;基于SVM和小波系数的图像去噪算法研究[J];微电子学与计算机;2014年08期
6 程怀蒙;张胜业;;基于ε-SVR算法的大地电磁测深资料去噪[J];地球物理学进展;2014年02期
7 彭涛;曹威;卢明;黄易;赵璐;;基于小波多尺度二值化的铜浮选工况识别[J];仪器仪表学报;2014年03期
8 闫丽娟;颉耀文;弥沛峰;刘惠峰;;基于小波的遥感影像薄云去除方法[J];矿山测量;2013年06期
9 徐晓东;李培林;炊明伟;王崴;冯有前;;一种针对图像脉冲噪声的改进中值滤波算法[J];电视技术;2013年19期
10 罗道江;;便携式手持设备结构设计综述[J];电子世界;2013年13期
相关博士学位论文 前3条
1 孙巧榆;复杂背景图像的文本信息提取研究[D];华东师范大学;2012年
2 田延明;语言离散—连续图式表征认知模式研究[D];上海外国语大学;2012年
3 赵海峰;基于图的模式识别及其在计算机视觉中的应用[D];南京理工大学;2011年
相关硕士学位论文 前10条
1 张鲁丹;智能图像识别技术研究[D];渤海大学;2016年
2 浦远强;便携式手持设备的设计与应用研究[D];西安建筑科技大学;2015年
3 车怡;基于图像处理技术的条形码识别系统的研究[D];华北电力大学;2014年
4 董华冰;一维图像条形码识别方法研究[D];华南理工大学;2012年
5 姬飞飞;条码识别技术及其应用研究[D];哈尔滨工程大学;2012年
6 张琪;结合边缘检测的图像二值化算法[D];吉林大学;2011年
7 龙春琳;基于颜色信息熵与边缘信息熵的图像检索技术研究[D];西安电子科技大学;2010年
8 乔连芝;基于图像处理方式定位识别条形码[D];华南理工大学;2010年
9 王刚;图像二值化方法研究及其在监控识别系统中的应用[D];湖南大学;2010年
10 韦轶群;基于GPU硬件加速的医学图像分割研究[D];上海交通大学;2009年
,本文编号:2390212
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2390212.html