骨架导电泥质砂岩频散特性实验研究
[Abstract]:With the deepening of oil and gas exploration and development, the target of exploration and development has gradually changed from simple high-amplitude structural reservoir to low porosity and low permeability, low resistivity, complex lithology and complex reservoir space. Low resistivity reservoir has become one of the main sources of reservoir increase and production in oil fields. Because the genetic types of low resistivity reservoirs are varied, and the skeleton conduction is one of the main causes of low resistance reservoirs, the research on the conductive law of conductive mineral formation has a certain guiding effect on the development of oil and gas reservoirs. In this paper, 12 artificial rock samples with different pyrite content and different muddy content were designed and pressed. The experimental data of rock electricity with different water saturation under different frequencies and different formation water mineralization degree at different frequencies are used, and the experimental data are quantitatively analyzed by X-ray diffraction whole rock of this group of rock samples in this paper, and the experimental data of rock electricity of different formation water mineralization degree under different frequency are used to make use of the experimental data of rock electricity of different water saturation under different frequencies. The influence of frequency on the conductive law of skeleton conductive shaly sandstone is analyzed and studied. The results show that: (1) both pyrite particles and argillaceous particles have dispersion characteristics; (2) with the increase of current frequency, the in-phase conductivity of rock samples increases gradually; Based on the experimental results of dispersion characteristics of skeleton conductive argillaceous sandstone samples, combined with the effective medium conduction theory, the formation is divided into five components: conductive skeleton particles, non-conductive skeleton particles, muddy, oil, gas and water, which are composed of five components: conductive skeleton particles, non-conductive framework particles, shale, oil, gas and water. The resistivity dispersion model of skeleton conductive shaly sandstone is established, and the effects of parameters such as pyrite content, pyrite conductivity, muddy content and shale conductivity on the dispersion characteristics of skeleton conductive shaly sandstone predicted by the model are analyzed. Then, based on the real resistivity data of petroleum-bearing rocks in the current frequency range of 1KHz and 20KHz, the unknown parameters in the effective medium resistivity dispersion model of skeleton conductive shaly sandstone are determined by the optimization technique. The fitting accuracy between the model and the experimental data is high, which shows that the resistivity dispersion model established in this paper can describe the dispersion characteristics of the skeleton conductive argillaceous sandstone formation. Finally, using the resistivity dispersion model of the effective medium of skeleton conductive shaly sandstone, the correction chart of frequency effect of skeleton conductive shaly sandstone with different pyrite content is established by selecting the current frequency of various practical logging applications. The method of correcting the apparent resistivity value of high frequency resistivity logging affected by pyrite content is given.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE34;P618.13
【相似文献】
相关期刊论文 前10条
1 Peter U. Ohirhian;安英;;泥质砂岩韦克斯曼—斯米茨方程的显式类型[J];天然气勘探与开发;1998年04期
2 范业活,关继腾,房文静;含水泥质砂岩导电特性的机理研究[J];青岛大学学报(自然科学版);2005年02期
3 唐炼,韩有信,张守谦,,于宝;大庆油田泥质砂岩介电特性实验研究[J];大庆石油学院学报;1994年04期
4 赵彦超,周渤然;泥质砂岩的三种导电模型的研究[J];测井技术;1998年02期
5 于宝;宋延杰;孔顺国;何英伟;张志新;;混合泥质砂岩双水电导率模型[J];大庆石油学院学报;2006年04期
6 沈建国;;泥质砂岩在超声测井条件下的弹性动力学模型及其应用[J];西安石油大学学报(自然科学版);1989年03期
7 宋延杰,石颖,张庆国;混合泥质砂岩通用电阻率模型研究[J];测井技术;2004年02期
8 于宝;宋延杰;韩有信;唐晓敏;;混合泥质砂岩人造岩样的实验测量[J];大庆石油学院学报;2006年04期
9 邓少贵,范宜仁;含油气泥质砂岩薄膜电位实验研究[J];测井技术;2002年01期
10 邓少贵,谢关宝,范宜仁,李峰;多浓度下泥质砂岩电学性质实验研究[J];石油地球物理勘探;2003年05期
相关会议论文 前10条
1 黄布宙;李舟波;付有升;李庆峰;陶宏根;王宏建;许淑梅;;基于泥质砂岩三孔隙混合导电模型的黏土导电机理分析[A];中国地球物理学会第二十三届年会论文集[C];2007年
2 黄布宙;李舟波;莫修文;付有升;;利用混合理论对泥质砂岩导电机理的分析[A];中国地球物理学会第22届年会论文集[C];2006年
3 黄布宙;李舟波;付有升;;基于混合理论的泥质砂岩三孔隙导电模型[A];中国地球物理学会第22届年会论文集[C];2006年
4 肖占山;罗延钟;翁爱华;王东;朱世和;;岩石频散特性的机理研究[A];中国地球物理第二十一届年会论文集[C];2005年
5 马琦;胡文祥;;液浸层状介质泄漏模式频散特性的分析求解方法[A];2013中国西部声学学术交流会论文集(下)[C];2013年
6 楚泽涵;谢进庄;王书贤;;泥质砂岩声频散性考察[A];1998年中国地球物理学会第十四届学术年会论文集[C];1998年
7 何存富;刘青青;焦敬品;吴斌;;基于特征频率法的钢轨频散特性计算方法[A];第十三届全国实验力学学术会议论文摘要集[C];2012年
8 尹成芳;柯式镇;张雷洁;张兴文;;岩石复电阻率虚部频散特性影响因素实验分析[A];中国地球物理2013——第二十专题论文集[C];2013年
9 祝捍皓;张海刚;刘伟;杨磊;;声速剖面对浅海波导频散特性的影响研究[A];中国声学学会第十届青年学术会议论文集[C];2013年
10 肖占山;翁爱华;徐世浙;王东;;泥质砂岩频散特性的实验研究[A];中国地球物理第二十一届年会论文集[C];2005年
相关博士学位论文 前5条
1 黄布宙;泥质砂岩三孔隙混合导电模型及其应用[D];吉林大学;2005年
2 张梁;酸性环境干湿交替作用下泥质砂岩宏细观损伤特性研究[D];重庆大学;2014年
3 宋延杰;混合泥质砂岩通用电阻率模型综合研究[D];大庆石油学院;2006年
4 吴雅琴;主族氧硫化物开放骨架的合成、结构及其性质研究[D];山西师范大学;2017年
5 谢伟;基于荧光金属—有机骨架功能材料的可控合成及性能研究[D];东北师范大学;2017年
相关硕士学位论文 前6条
1 李丽;临南油田夏52块沙三中泥质砂岩油层的测井评价[D];中国地质大学;2003年
2 程莉;板状结构中超声Lamb波频散特性研究及其探头研制[D];河北科技大学;2016年
3 于宝;混合泥质砂岩双水电阻率模型实验研究[D];大庆石油学院;2006年
4 孙修展;点阵材料中应力波的频散特性分析[D];北京交通大学;2013年
5 邢丽波;混合泥质砂岩导电效率、ABC、颗粒导电电阻率模型研究[D];大庆石油学院;2005年
6 张凯;瑞利面波波场频散特性物理模拟研究[D];西南交通大学;2014年
本文编号:2469861
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2469861.html