涡轮钻具能量传输系统及叶型优化
[Abstract]:As the core technology of downhole power drilling, turbodrill has a wide range of applications in the field of petroleum industry. Foreign countries benefit from the historical accumulation of industry, which makes it far ahead in the fields of complex geology and inclined well drilling by using turbodrill tools combined with embedded diamond and downhole drilling measurement system. The study of turbodrill tools is helpful to strengthen the detection and exploitation level of deep-sea oil fields, shale gas and so on. Turbine drill tool vortex is a kind of downhole power device in which high pressure mud flows directly through turbine joints arranged in turn by several stator rotors and drives the drill bit directly after the turbine rotates. It has high speed and excellent stability, and there is no rubber in the whole structure. Therefore, turbodrill is widely used in inclined well drilling with high stability and drilling demand under extreme working conditions. In order to design turbine drill tools that meet the requirements, the following work has been carried out in this paper: one dimensional calculation is used to determine the number of turbine joints, geometric size of single section, pressure drop and other parameters of turbine drill tools as a whole. After that, the three-dimensional modeling design of turbine joint blade is carried out by Numeca. The designed dynamic and static cascades are used to verify the working performance of turbodrill tools, and the flow of turbodrill tools is analyzed. The results of numerical simulation show that the turbine drill designed without considering the viscosity of drilling fluid in one dimensional design has insufficient working ability due to low efficiency and insufficient flow rate, which is difficult to meet the design requirements. In order to meet the design requirements and optimize the performance of turbine joints, the original design scheme is optimized and improved, and a more suitable design scheme is selected after analyzing the flow and load distribution. After changing the design law of runner width to the scheme of approximate linear reduction, the efficiency in turbine is increased from 72.6% to 80.3%, so that the scheme can meet the design requirements. The thickness and bending are analyzed comprehensively. After the influence of the middle arc on the blade profile, the turbine section can output 2383W power under the condition of pressure drop to 72.5KPa, which meets the design requirement of 2353W single section power. At the same time, there is a certain potential to do work. When the driving pressure is increased to the design constraint limit 95KPa, the output power of the single turbodrill can be increased to 3611W when the rotating speed is constant. Finally, the performance of turbodrill under variable working conditions is discussed, and the effects of working conditions on the performance of turbodrill are simply compared. The change of viscosity to the work performance of blade is more complex. Turbine drilling tool has high viscosity because of the requirement of drilling fluid chip carrying capacity. The effect of viscosity on properties is not linear, and mainly affects efficiency and pressure drop.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE921.2
【相似文献】
相关期刊论文 前10条
1 姚坚毅;刘宝林;王瑜;;涡轮钻具水力设计与分析方法应用现状研究[J];石油矿场机械;2012年03期
2 尹丽;;优选涡轮材质和优化涡轮钻具结构 提高其马达使用寿命[J];河南科技;2013年16期
3 ;国外使用涡轮钻具定向弯曲钻孔[J];探矿工程;1966年02期
4 胡泽明;;减速涡轮钻具[J];石油钻采机械通讯;1976年04期
5 胡泽明;;低速大扭矩涡轮钻具的原理与应用[J];石油钻采机械通讯;1976年05期
6 ;涡轮钻具在煤矿的钻进试验[J];煤矿安全;1978年01期
7 郭忠顺;; 地热涡轮钻具即将用于油田[J];石油矿场机械;1981年06期
8 章扬烈;;国外涡轮钻具发展近况[J];石油矿场机械;1984年05期
9 胡泽明;独联体国家涡轮钻具技术水平评析[J];石油机械;1993年06期
10 胡泽明;刘志洲;;涡轮钻具小级高涡轮设计的新发展[J];石油矿场机械;1993年02期
相关会议论文 前2条
1 许福东;张晓东;华北庄;符达良;;180涡轮钻具用同步减速器研制[A];2004年石油装备年会暨庆祝江汉机械研究所建所40周年学术研讨会论文集[C];2004年
2 刘孝光;冯进;张慢来;龙东平;丁凌云;;基于CFD分析的涡轮钻具力学性能预测[A];2004年石油装备年会暨庆祝江汉机械研究所建所40周年学术研讨会论文集[C];2004年
相关重要报纸文章 前1条
1 曾 尉;论文只是科研成果的副产品[N];光明日报;2002年
相关博士学位论文 前2条
1 谭春飞;深井超深井涡轮钻具复合钻井提高钻速技术研究[D];中国地质大学(北京);2012年
2 汪凯;涡轮钻具滚动轴承故障诊断系统的研究[D];西南石油大学;2016年
相关硕士学位论文 前10条
1 贺恒;带水力平衡系统的涡轮钻具研究[D];长江大学;2016年
2 刘岩;涡轮钻具试验台架检测控制系统的设计与实现[D];中国地质大学(北京);2016年
3 余世敏;基于响应面法的涡轮钻具叶片优化设计与研究[D];西南石油大学;2016年
4 杨韬;气体涡轮钻具变几何研究及加工实现[D];西南石油大学;2016年
5 王龙;井下涡轮钻具涡轮叶片造型及优化研究[D];西安石油大学;2016年
6 赵洪波;涡轮钻具涡轮叶片设计及水力性能仿真优化研究[D];中国地质大学(北京);2012年
7 薛鹏;涡轮钻具定转子轴向间隙调整的可视化研究[D];中国石油大学;2009年
8 董小虎;适用于连续管的小尺寸涡轮钻具叶型研究[D];长江大学;2014年
9 王庆仓;涡轮钻具叶片的逆向分析及流场仿真研究[D];西南石油大学;2015年
10 张毅;涡轮钻具密封设计与实验研究[D];西南石油大学;2011年
,本文编号:2487095
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2487095.html