基于声学特征的乐器识别研究
发布时间:2018-04-28 17:05
本文选题:乐器识别 + 特征抽取 ; 参考:《华南理工大学》2012年硕士论文
【摘要】:近年来,随着数字音乐创作、收集以及存储技术的快速发展,许多机构积累了大量的音乐音频数据。如何对这些音频资源进行有效的组织和管理,使得人们能从大量音频数据中进行查询和处理他们需要的音频数据,已经成为一个迫切的需求。在声源识别中,语音信号处理与识别是一个传统的研究热点,随着计算机识别技术的迅速发展,基于内容的音乐信号分析也逐渐成为一个新的研究热点。根据基于内容的音乐特征研究,音色特征可以用来描述音频文件音色,使基于内容的音乐查询搜索引擎的实现成为可能。而乐器识别是其中一个重要的应用。乐器识别的应用非常广泛,可以应用于基于内容的音乐转录、音频的结构化编码、音乐推荐及查询引擎以及音乐评注等方面。 本论文详细阐述了基于声学特征的乐器识别的基本原理和实现过程。首先对乐器识别中常用的声学特征做了较为深入的研究,并且详细阐述了特征的提取方法。本论文实验使用了Mel倒谱系数(MFCC)、Mel差分倒谱系数(ΔMFCC)等作为乐器识别系统的特征系数,重点研究了支持向量机(SVM)的分类原理,并作为乐器识别的分类器算法。 在实验测试时,首先使用了不同的声学特征系数对乐器进行识别,从实验结果分析这些特征对乐器识别的正确率的影响。然后对实验进行了进一步的研究,使用了主成分分析技术(PCA)和陈森平等提出的改进的最大间隔的支持向量机特征选择算法,实验表明, PCA可以有效实现支持向量机分类器特征向量的简约,,缩短了乐器识别系统的训练和识别时间。通过实现的改进的特征选取算法,则可以选取出其中最有效的特征,从而提高支持向量机的泛化能力,进一步提高乐器识别的识别正确率。
[Abstract]:In recent years, with the rapid development of digital music creation, collection and storage technology, many organizations have accumulated a large amount of music audio data. How to organize and manage these audio resources effectively, so that people can query and deal with the audio data they need from a large number of audio data, has become an urgent need. Speech signal processing and recognition is a traditional research hotspot in acoustic source recognition. With the rapid development of computer recognition technology, content-based music signal analysis has gradually become a new research hotspot. Based on the research of content-based music features, timbre features can be used to describe the timbre of audio files, which makes the implementation of content-based music query search engines possible. Musical instrument recognition is one of the important applications. Musical instrument recognition is widely used in content-based music transcription, audio structured coding, music recommendation and query engine, music commentary and so on. In this paper, the basic principle and realization process of musical instrument recognition based on acoustic features are described in detail. Firstly, the acoustic features commonly used in musical instrument recognition are studied in depth, and the extraction methods of the features are described in detail. In this paper, the Mel cepstrum coefficients and the differential Cepstrum coefficients (螖 MFCC) are used as the characteristic coefficients of the musical instrument recognition system. The classification principle of support Vector Machine (SVM) is studied, and the classification algorithm is used as the classifier for the recognition of musical instruments. In the experiment, different acoustic characteristic coefficients are used to identify the musical instrument, and the influence of these characteristics on the accuracy of the instrument recognition is analyzed from the experimental results. Then the experiment is further studied, using the principal component analysis (PCA) technique and Chen Sen's equal improved support vector machine feature selection algorithm with maximum interval. Experiments show that PCA can effectively reduce the eigenvector of SVM classifier and shorten the training and recognition time of the instrument recognition system. Through the improved feature selection algorithm, the most effective feature can be selected, thus the generalization ability of SVM can be improved, and the recognition accuracy of musical instrument recognition can be further improved.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP391.41
【参考文献】
中国期刊全文数据库 前9条
1 丁爱明;;作为说话人识别特征参量的M FCC的提取过程[J];电子工程师;2006年01期
2 李翰;;中外乐器分类的研究[J];福建论坛(人文社会科学版);2008年S2期
3 张奇,苏鸿根;基于支持向量机的乐器识别方法[J];计算机工程与应用;2004年18期
4 陈启买;陈森平;;支持向量机的一种特征选取算法[J];计算机工程与应用;2009年23期
5 张一彬;周杰;边肇祺;郭军;;基于内容的音频与音乐分析综述[J];计算机学报;2007年05期
6 郑怡文;;典型的音频分类算法[J];计算机与现代化;2007年08期
7 曾黄麟,虞厥邦,曾谦;基于主成分分析的特征简化[J];四川轻化工学院学报;1999年01期
8 但志平;胡刚;刘勇;;基于LPC倒谱参数分析的说话人识别系统[J];三峡大学学报(自然科学版);2007年01期
9 刘雅琴;智爱娟;;几种语音识别特征参数的研究[J];计算机技术与发展;2009年12期
中国硕士学位论文全文数据库 前1条
1 白亮;音频分类与分割技术研究[D];国防科学技术大学;2004年
本文编号:1816138
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/1816138.html