引入互联网搜索量的市场需求预测模型研究
[Abstract]:In recent years, with the continuous development of the Internet industry, more and more information in the Internet, search engines have gradually become an important application for Internet users. In 2007, Google launched the Google trend, Statistics of the vast number of Google search users search keyword features. Many scholars have begun to study the relationship between the Internet search volume characteristics of products or services and the actual market demand, and found that there is a significant correlation between the Internet search volume and the actual market demand. And the introduction of Internet search volume in the prediction model will help to improve the prediction accuracy of the model. However, most of the current research is in foreign countries, using the Google Index provided by Google Trends as the representative of Internet search volume, focusing on the pharmaceutical, unemployment, tourism and other industries. There is little research on the relationship between the characteristics of Internet search volume and the actual market demand of Chinese domestic market. Based on the above reasons, this paper focuses on the study of the market characteristics of domestic Internet search volume in China, and verifies the relationship between the Internet search volume and the actual market demand from more fields. The main research results of this paper are as follows: 1. Based on Arima model and ordinary time series, this paper constructs a market demand forecasting model with Internet search volume. 2. This paper studies the characteristics of Internet search volume of products or services in China's domestic market and its relationship with actual market demand. Based on the number of users reached by Fetion and the domestic box office, this paper studies the characteristics of Internet search volume of products or services in China, and the relationship between them and their market demand. 3. Verify the role of Internet search volume in market demand forecasting. By establishing a comparative model, the prediction accuracy between the prediction model without Internet search quantity and the prediction model with Internet search quantity is compared, and the function of Internet search quantity in prediction is revealed.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP391.3
【参考文献】
相关期刊论文 前10条
1 李隽波;孙丽娜;;基于多元线性回归分析的冷链物流需求预测[J];安徽农业科学;2011年11期
2 唐伟;论管理活动中的定性预测方法[J];北京师范大学学报;1991年04期
3 潘志刚;韩颖;;组合预测法在我国汽车市场需求预测中的应用[J];商业研究;2006年20期
4 李山;邱荣旭;陈玲;;基于百度指数的旅游景区络空间关注度:时间分布及其前兆效应[J];地理与地理信息科学;2008年06期
5 方庚明;;基于多元线性回归的公路客运量发展预测模型[J];工程与建设;2011年02期
6 王鹏飞;多元线性回归方法在中国用电量预测中的应用研究[J];东北电力技术;2005年08期
7 刘颖;吕本富;彭赓;;网络搜索对股票市场的预测能力:理论分析与实证检验[J];经济管理;2011年01期
8 赵辉;王辉;;基于多种时序模型的河北省某市卷烟需求预测比较[J];经济研究导刊;2011年08期
9 章伟;;混合模型在经济时间序列预测中的应用研究[J];计算机仿真;2011年06期
10 张美英;何杰;;时间序列预测模型研究简介[J];江西科学;2009年05期
相关博士学位论文 前1条
1 查贵庭;中国稻米市场需求及整合研究[D];南京农业大学;2005年
相关硕士学位论文 前4条
1 夏荣尧;基于ARIMA模型的我国通货膨胀预测研究[D];湖南大学;2009年
2 王建刚;商品住宅市场分析与需求总量控制[D];武汉大学;2005年
3 姜爱平;具有外生变量的非线性时间序列模型及其实证分析[D];西安理工大学;2007年
4 方冰;基于社会化媒体营销的品牌内容传播[D];中国科学技术大学;2010年
,本文编号:2125287
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2125287.html