基于用户行为的信任感知推荐方法研究
[Abstract]:The recommendation provides great convenience for users to make use of network resources. According to whether the input information is clear or not, the recommendation can be divided into two categories: (1) recommendation based on keywords, (2) recommendation based on user's potential behavior and relationship. The most commonly used keyword-based recommendation is search. The user enters the keyword, and the search engine returns the search results closest to the keyword. However, traditional search engines mainly improve the recall and precision of search results, and ignore that users with different backgrounds expect different search results for the same keywords. Simply improving the recall and precision of search engines can not provide users with satisfactory recommendation, which is due to the limited information contained in keyword-based search or the lack of mining the implicit needs of users. As a result, the search results can not meet the personalized needs of users. Therefore, to meet the personalized needs of users is one of the key factors to improve the search quality. This paper holds that improving the quality of personalized search mainly depends on the accuracy of mining the implicit information of users and reflecting the change of user preferences in real time. Based on the systematic research on the search behavior, this paper proposes the following aspects to improve the search quality: (1) A personalized search result prediction method based on user behavior is proposed, and the historical access behavior of the user is analyzed. A hidden Markov model (HMM),) based on user behavior and preference is established to predict user's search preference and realize personalized search. In order to improve the efficiency of this method, the time of estimating HMM parameters is reduced by clustering similar users, and a more efficient personalized search method is obtained. (2) the influence of web page ranking on search quality is studied. Aiming at the phenomenon that web pages can improve their ranking by linking to each other, this paper analyzes the topology of existing web pages, and puts forward a method to identify and eliminate the abnormal ranking lifting pages by the lifting coefficient of web pages. The quality of search results is improved effectively. Another problem that must be faced in the process of recommendation is how to provide users with reasonable recommendation and help them to make decisions when there is no clear requirement. Based on the systematic study of user behavior and trust relationship, this paper proposes to improve the quality of recommendation from the following aspects: (1) study how to provide reasonable recommendation for new users, that is, the cold start problem of users. Because the recommendation given by trusted users is more credible, in order to extend the scope of trusted users and ensure that the extended trust relationship is reliable, this paper proposes to restrict the extension of trust relationships through distrust relationships. Based on the extended trust relationship and the evaluation information of the products, the recommendation effect of the new users and the users with few historical information is improved. (2) the influence of time factors on the recommendation is discussed. This paper studies the relationship between user behavior and their preferences, and proposes a recommendation model to describe the change of user preferences over time. And the similarity calculation process between users is transformed into bipartite graph optimal matching, which not only ensures the accuracy of the recommendation algorithm, but also reduces its time complexity. (3) aiming at the phenomenon that some products with potential needs have little chance to be paid attention to. A recommendation method constrained by long tail distribution is proposed. The method firstly determines the similarity relationship between users based on user behavior, and then reasonably extends the similarity relationship between users. Finally, the recommended weight of commodities is constrained by long tail distribution. It solves the problem that some commodities are difficult to be noticed and discovered by users because of their small quantity of evaluation.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 赵玲;张静;;微博用户行为研究的多维解析[J];情报资料工作;2013年05期
2 郭岩;基于网络用户行为的相关页面挖掘模型[J];微电子学与计算机;2003年05期
3 牛现云;王宇鸽;;1979-2010年图书馆读者行p悍治鑫南籽芯縖J];公共图书馆;2012年01期
4 朱彤;刘奕群;茹立云;马少平;;基于用户行为的长查询用户满意度分析[J];模式识别与人工智能;2012年03期
5 左渭斌;;用户行为特征库的构建方法研究[J];产业与科技论坛;2012年10期
6 苏红;万国根;;基于用户行为关联分析的电子取证系统研究[J];电信科学;2010年12期
7 方彬;胡侠;王灿;;基于用户行为的盲人图书推荐方法[J];计算机工程;2011年15期
8 张书娟;董喜双;关毅;;基于电子商务用户行为的同义词识别[J];中文信息学报;2012年03期
9 李继洪;黄勤;刘益良;柳玉仙;;基于用户行为统计的入侵检测判据研究[J];微计算机信息;2009年03期
10 郑双阳;林锦贤;;基于用户行为聚类的搜索[J];计算机与数字工程;2009年12期
相关会议论文 前10条
1 武小年;周胜源;;数据挖掘在用户行为可信研究中的应用[A];第十一届保密通信与信息安全现状研讨会论文集[C];2009年
2 樊旺斌;刘正捷;陈东;张海昕;;博客服务系统用户行为研究——用户访谈[A];第二届和谐人机环境联合学术会议(HHME2006)——第2届中国人机交互学术会议(CHCI'06)论文集[C];2006年
3 张书娟;董喜双;关毅;;基于电子商务用户行为的同义词识别[A];中国计算语言学研究前沿进展(2009-2011)[C];2011年
4 曹建勋;刘奕群;岑荣伟;马少平;茹立云;;基于用户行为的色情网站识别[A];第六届全国信息检索学术会议论文集[C];2010年
5 李海宏;翟静;唐常杰;李智;;基于用户行为挖掘的个性化Web浏览器原型[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年
6 寇玉波;李玉坤;孟小峰;张相於;赵婧;;个人数据空间管理中的任务挖掘策略[A];第26届中国数据库学术会议论文集(B辑)[C];2009年
7 徐峗;张盼;丁婕;;只逛不买的电子商务用户分析——以淘宝网为例[A];第六届(2011)中国管理学年会——信息管理分会场论文集[C];2011年
8 蔡皖东;何得勇;;基于用户行为监管的内部网安全机制及其实现技术[A];全国网络与信息安全技术研讨会’2004论文集[C];2004年
9 郑常熠;佘宇东;王新;薛向阳;;CDN与P2P混合网络架构下一种基于用户行为的VoD分发策略[A];2007通信理论与技术新发展——第十二届全国青年通信学术会议论文集(下册)[C];2007年
10 吴建军;;谈网页设计的艺术性表现[A];经天纬地——全国测绘科技信息网中南分网第十九次学术交流会优秀论文选编[C];2005年
相关重要报纸文章 前10条
1 张伟;在用户行为中寻找灵感[N];中华合作时报;2014年
2 ;危险的用户行为让网络面临风险[N];网络世界;2007年
3 本报记者 宋丽娜;做安全旗舰品牌[N];网络世界;2004年
4 群邑中国互动营销总裁 MMA中国无线营销联盟联席主席 陈建豪;移动互联催生用户行为变化[N];第一财经日报;2013年
5 本报记者 张樱赢;移动医疗 “笨”有前景[N];计算机世界;2013年
6 盎然;大数据时代来临 你该干什么?[N];中国政府采购报;2013年
7 东软研究院副院长 闻英友;云安全,机遇与挑战并存[N];中国计算机报;2010年
8 本报记者 刘菁菁;Google力拓未来搜索[N];计算机世界;2011年
9 本报记者 曾居仁 通讯员 郝金荣;贵州“万村千乡”网页工程开辟为农服务新渠道[N];中国气象报;2012年
10 壮壮;批量保存网页信息[N];电脑报;2004年
相关博士学位论文 前10条
1 张亚楠;基于用户行为的信任感知推荐方法研究[D];哈尔滨工程大学;2014年
2 蒋朦;社交媒体复杂行为分析与建模[D];清华大学;2015年
3 陈亚睿;云计算环境下用户行为认证与安全控制研究[D];北京科技大学;2012年
4 杨悦;基于网络用户行为的搜索排行榜研究[D];北京交通大学;2013年
5 阳德青;面向社会网络的用户行为挖掘与应用研究[D];复旦大学;2013年
6 郭U,
本文编号:2241806
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2241806.html