基于改进PageRank算法的医学垂直搜索引擎的研究与实现
[Abstract]:In recent years, the Internet has gradually become an important platform for people to obtain medical health information, in which search engine provides great convenience in the process of searching medical information. However, the existing medical search engines still have some shortcomings in topic similarity judgment and web page sorting algorithms. Therefore, a vertical search engine oriented to medical field is constructed by improving the topic similarity judgment and PageRank algorithm. The main research contents and results are as follows: (1) choose the initial URL, to construct the subject thesaurus of medical field and study the spatial vector model. After crawling the web page, we distinguish the theme correlation from hyperlink, meta-information and thesaurus respectively, and effectively remove the page which is not related to the topic. The efficiency of search engine is greatly improved. (2) the PageRank algorithm and HITS algorithm are studied and analyzed in this paper. Because the PageRank algorithm is more efficient and the amount of computing data is larger, the PageRank algorithm is used as the sorting algorithm for web pages in this paper. Aiming at the shortcomings of PageRank algorithm, such as biased old web pages, average weight distribution, topic drift and so on, time feedback factor is introduced to improve the score of "new" web pages, and authoritative feedback factor is introduced to improve the weights of web pages. The theme correlation factor is introduced to suppress the "topic drift". (3) based on the above two research results, this paper designs a vertical search engine oriented to the medical field. When designing search engine, it is mainly divided into crawler module and retrieval service module. In addition, based on the high extensibility and plug-in mechanism of Nutch, this paper adds IKAnalyzer Chinese word Segmentation to improve the ability of search engine to process Chinese information. (4) finally, the project is deployed and verified. Experiments show that the vertical search engine can segment words by word, and the accuracy of word segmentation reaches 900.The crawler efficiency is improved by 8 percent after the page is judged by the similarity of topic, and the PageRank algorithm is improved. The accuracy of vertical search engine has improved obviously, and the precision rate of the top 10 results returned to users is more than 0.7.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【参考文献】
相关期刊论文 前10条
1 吴宏洲;;分词技术的研究与应用——一种快速分词的实现[J];电脑知识与技术;2015年06期
2 高慧;张涛;王付强;夏彬;;面向舆情发现系统的中文语料分词研究[J];软件导刊;2015年11期
3 万晓松;王志海;原继东;;基于稀疏矩阵面向论文索引排名的启发式算法[J];计算机应用;2015年10期
4 程维刚;王宁;田勇;;基于关键词匹配技术的相似试题检测方法研究[J];北华航天工业学院学报;2015年03期
5 张吴波;史旅华;李贵荣;;全文检索引擎Lucene系统模型与应用研究[J];软件导刊;2015年06期
6 陈道存;刘斌;张鑫;;高校FTP搜索引擎的设计与实现[J];蚌埠学院学报;2015年03期
7 于娟;刘强;;主题网络爬虫研究综述[J];计算机工程与科学;2015年02期
8 高翔;吴万琴;;人工智能技术在搜索引擎中的应用[J];硅谷;2015年03期
9 张军强;李炜;沈奇威;;一种爬虫监控系统的设计与实现[J];电信工程技术与标准化;2014年12期
10 胡宏伟;虞萍;周南;乔军;;基于Lucene的文献资料全文检索系统的设计与实现[J];重庆理工大学学报(自然科学);2014年11期
相关硕士学位论文 前6条
1 王清霞;基于领域本体的垂直搜索引擎页面排序算法的研究[D];兰州理工大学;2014年
2 岑沛斯;基于文本分析的互联网视频搜索引擎技术研究[D];杭州电子科技大学;2013年
3 黄江平;基于Lucene的桌面搜索引擎的研究与应用[D];浙江理工大学;2012年
4 朱明强;基于词典和词频分析的论坛语料未登录词识别研究[D];西南大学;2012年
5 李宜兵;基于搜索引擎网页排序算法研究[D];沈阳理工大学;2011年
6 董祥千;搜索引擎设计分析与结果聚类改进[D];电子科技大学;2007年
,本文编号:2247438
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2247438.html