搜索引擎用户满意度多维分析方法的研究
[Abstract]:With the development of Internet and the arrival of big data era, search engine has become the main way to get information. Search engine system has always sought to show better search results to users. Therefore, the evaluation of search engine results quality has become the focus of search engine manufacturers. According to their own search engine characteristics and business needs, search engine manufacturers have a set of their own evaluation system, in a search engine will be improved before the launch of the evaluation of its good or bad. User satisfaction is a very important index in the evaluation of search engine. It directly reflects the degree of satisfaction with the result returned by the search engine when using the search engine. In this paper, a set of multi-dimensional analysis methods for user fullness analysis of search engine is established by analyzing the existing user behavior click-through data. Firstly, the existing user click behavior log is cleaned, converted, and the characteristics of the log are analyzed. 71 dimension attributes are selected and a multidimensional data model is established. Then, multidimensional analysis is carried out based on multidimensional data model. In multidimensional analysis, the results may be difficult to explain and can not be trusted, and because of the large number of dimensions, there will be dimension explosion in multidimensional cross-analysis. Therefore, the association rule mining is introduced into the multidimensional analysis method to solve the problem of disbelief in the results and multidimensional explosion. Finally, experiments are designed to verify the feasibility of multidimensional analysis and association rules. At the same time, some parameter values used in mining association rules are determined. Through the research of this paper, on the one hand, a set of multidimensional analysis method is established for the analysis of user satisfaction, which enables analysts to analyze user satisfaction from multiple dimensions and angles. On the other hand, it also provides a research idea for the design of multidimensional analysis method and the application of association rule mining to multidimensional analysis method.
【学位授予单位】:东北师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.3
【参考文献】
相关期刊论文 前9条
1 王英博;马菁;柴佳佳;赵彬;;基于Hadoop平台的改进关联规则挖掘算法[J];计算机工程;2016年10期
2 邓晓妹;武刚;;基于点击日志的搜索引擎用户满意度评价研究[J];计算机工程与应用;2015年08期
3 章志刚;吉根林;;一种基于FP-Growth的频繁项目集并行挖掘算法[J];计算机工程与应用;2014年02期
4 杨立波;;基于聚类的关联规则挖掘算法[J];太原大学学报;2011年03期
5 苏君华;;搜索引擎评价研究综述[J];情报杂志;2011年04期
6 王卉;张红君;;关联挖掘研究综述[J];软件导刊;2009年03期
7 彭波,闫宏飞;搜索引擎检索系统质量评估[J];计算机研究与发展;2005年10期
8 印鉴,陈忆群,张钢;搜索引擎技术研究与发展[J];计算机工程;2005年14期
9 孙泳,刘少辉,史忠植;数据仓库中多维分析的数据展现[J];计算机工程与应用;2004年04期
相关博士学位论文 前1条
1 岑荣伟;基于用户行为分析的搜索引擎评价研究[D];清华大学;2010年
相关硕士学位论文 前10条
1 黄剑;基于Hadoop的关联规则挖掘算法分析[D];电子科技大学;2015年
2 何健伟;基于Hadoop的数据挖掘算法研究与实现[D];北京邮电大学;2015年
3 曾悠;大数据时代背景下的数据可视化概念研究[D];浙江大学;2014年
4 沙倩;基于云平台的多维数据分析的研究与应用[D];北京邮电大学;2014年
5 周诗慧;基于Hadoop的改进的并行Fp-Growth算法[D];山东大学;2013年
6 吕舜;基于人工标注的搜索引擎评估方法与实现[D];大连理工大学;2013年
7 余锦秀;基于用户行为分析的搜索引擎自动评价技术研究[D];北京邮电大学;2013年
8 徐立婷;多维数据可视化分析方法研究与应用[D];哈尔滨工程大学;2010年
9 马安胜;多维数据关联规则挖掘研究及系统实现[D];吉林大学;2007年
10 马铁驹;数据仓库及多维分析[D];大连理工大学;2000年
,本文编号:2320931
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2320931.html