投诉信息自动分类与推送系统的研究与设计
[Abstract]:With the development of communication service, there are many new problems and contradictions, which will eventually turn into customer complaints to the complaint analysis department. Can effectively analyze complaints, quickly extract users, analysis departments or other business departments concerned about complaints information, no doubt for the correct handling of complaints, the rapid discovery of problems is very helpful. However, at present, there is no very satisfactory complaint information identification technology centered on the attention of users. In most cases, in order to ensure accuracy, we still have to rely on manual identification, which not only costs a lot of manpower and time, but also costs a lot of time. And also can not adapt to the large amount of data, the rapid growth rate of data, easy to cause the backlog of data. More importantly, it is easy to miss opportunities for early detection of problems, so that the problem of response to complaints information cannot be curbed before it can be further expanded. This will not only reduce customer satisfaction, and even make customers lose confidence in brand image. In view of the above problems, this subject analyzes the complaint data, and researches and records the behavior of the complaint analysts to screen the target complaints. This paper tries to solve the problem of automatic classification and push of complaint information with the attention of complaint analysts. At the same time, it is applied to the automatic classification and push system of complaint information according to the actual project requirements, which provides an auxiliary platform to screen the target data for the complaint analysts. The main work of this paper is as follows: first, through the research of complaint data and user analysis habits, the definition and related concepts of automatic classification and push are clarified. Secondly, a text feature extraction method based on TF/IDF algorithm is proposed. Thirdly, a method of constructing complaint space based on VSM model and all kinds of feature word sets is proposed. On this basis, a classification model composed of complaint space, classification algorithm and classification parameters is proposed. Fourthly, by recording the behavior of the user tagging samples, extracting the push relation mapping, and constructing the automatic push model on this basis, to achieve the purpose of correctly pushing the classification results to the corresponding users.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP391.1
【参考文献】
相关期刊论文 前9条
1 杨晓懿,刘嘉勇,陈淑敏;SVM在文本自动分类中的应用[J];成都信息工程学院学报;2005年02期
2 常凯;;基于TF*IDF垃圾邮件过滤改进算法的研究[J];电脑知识与技术;2010年25期
3 李蓉 ,叶世伟 ,史忠植;SVM-KNN分类器——一种提高SVM分类精度的新方法[J];电子学报;2002年05期
4 霍亮;杨柳;张俊芝;;贝叶斯与k-近邻相结合的文本分类方法[J];河北大学学报(自然科学版);2012年03期
5 张希坤;侯洁;;基于在线学习平台的智能推送机制研究[J];科技风;2012年08期
6 张立伟;刘培玉;朱振方;;一种基于改进Rocchio的网络信息过滤反馈算法研究[J];山东科学;2009年01期
7 渠本哲;张凝;王潜平;;使用Java和XML实现数据移植[J];计算机技术与发展;2006年09期
8 何中胜;庄燕滨;;基于Apriori & Fp-growth的频繁项集发现算法[J];计算机技术与发展;2008年07期
9 李彬;;基于Hadoop框架的TF-IDF算法改进[J];微型机与应用;2012年07期
相关硕士学位论文 前4条
1 刘亚南;KNN文本分类中基于遗传算法的特征提取技术研究[D];中国石油大学;2011年
2 宋迎花;群体性突发事件的研究与预警实现[D];北京邮电大学;2012年
3 周涓;基于最大最小距离法的多中心聚类算法研究[D];重庆大学;2006年
4 陈震伟;教育资源共享系统中全文检索技术的研究[D];西安电子科技大学;2008年
,本文编号:2387872
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2387872.html