搜索引擎中索引表求交和提前停止技术优化研究
[Abstract]:At present, the number of web pages processed by the search engine system is increasing, and how to efficiently complete the user's query is the most recent years, whether industry or academia is working hard to solve, this paper is to study the above requirements. In particular, this paper discusses the index table intersection algorithm and the early stop technique, and we also try to improve the efficiency of query processing by using a new generation of graphic graphics card technology. The specific work includes the following aspects: First, this paper first systematically reviews the current index table intersection algorithm, and uses the query set of the real search engine to test and outline the various intersection algorithms and search strategies on the GOV and GOV2 data sets. The influence of various factors on the performance of the algorithm is evaluated, and the optimization method is put forward accordingly. In this paper, we try to analyze the influence of the number of branch prediction failures and the number of cache failures on the performance of the search algorithm and the search algorithm. In response, the author has found that the algorithm performance of the model based on SvS and using the hashing strategy is the best, although the number of the comparisons of the algorithm is not the least, the cache failure and the number of the branch prediction failures in the running process are relatively low on the premise of a small amount of extra storage space. low, thus achieving the best This paper also discusses the effect of re-ordering of documents on the performance of the algorithm. Most of the algorithms are better than the index of the random number of the document in the index ordered by the URL, and the number of cache failures and the number of branch prediction failures are more In addition, the performance of various search strategies in the intersection algorithm is analyzed by the relative ratio of the table length. In this paper, a heuristic scheduling strategy is designed to improve the performance of the algorithm. The experimental results show that this heuristic hybrid scheduling strategy can significantly improve the performance of the algorithm. Second, the current graphics graphics card (GPU) has been used more and more in various scientific computing because of its powerful parallel computing capability In this paper, the paper discusses the steps of using the algorithm of the index table in the GPU to accelerate the search engine and the subsequent calculation and sorting of the documents. The experiments show that the proposed algorithm can greatly improve the query processing. In this paper, an interactive query or non-interactive query of the high query load that may exist in the search engine is presented, and the CPU-GPU cooperative work model is proposed to speed up the index table in the search engine. When the system is in a low load, the response time of the query processing is the first to be considered when the system is in the low load, and each time the new query enters the system, the CPU or the GPU can be used to ask the algorithm to query the query. Line processing. When the system is in a high query load or a non-interactive query needs to be processed, a synchronization pattern is used, in which a number of queries first constitute a batch at the CPU end and then sent to the GPU. line processing. Based on the model, in the case of processing a high-load query or a non-interactive query, the throughput rate of the query processing can be large with the large-scale parallel processing capability of the GPU. In this paper, this paper presents and implements this batch. In this framework, the search algorithm in the intersection is the performance bottleneck, so this paper focuses on the various advantages of the search algorithm. Specifically, in the GPU table intersection algorithm proposed herein, when one of the two index tables 1 and 2 performs an intersection operation (| 1 | 1 | 2 |), for each element of 1, each thread of the GPU executes a search strategy to search in 2 to find the intersection The simplest search strategy is a binary search. In this paper, based on the algorithm, a linear regression search, a hash-segment search, and a Bloom Filter-based GPU are proposed. The experimental results show that several strategies can improve the performance of the algorithm, especially the performance of the hash segmentation algorithm. This paper also discusses the performance of the index rearrangement for GPU. In addition, the paper also studies how to compute the score of the document on the basis of the GPU's intersection algorithm, and put forward a kind of document bank suitable for GPU batch algorithm. The third, this paper also discusses the further optimization of query processing after the intersection operation, that is, using the advance stop technique to optimize the text. File sorting. The basic idea to stop in advance is that you can query the top k with the highest correlation score with the user without the need to scan the full index table. In this paper, a new method is proposed to re-organize the index structure. In particular, in this paper, the relationship between the early stop effect and the static ranking score and the word frequency score is first In this paper, we find that as long as the word frequency score is uniformly distributed, the effect of early stop The fruit will be very good. However, the true word frequency score is not subject to uniform distribution, that is, the probability of certain scores will be higher other fractional values. The above-described skew distribution is the leading end of the global ranking approach This paper proposes a new algorithm to rearrange the documents in the inverted index according to some extra information. In this paper, the index structure of the index is re-organized by using the score of the upper bound (UBIR) and the static ranking score in the document, so as to advance the advance in the query processing. By this method, when the query processing is performed, the estimated value of the frequency of the document word can be significantly reduced, so that the advance can be more quickly satisfied. In this paper, several other global information-based indexes are also put forward. By comparing the various algorithms proposed in this paper on the GOV and GOV2 data sets, and compared with the existing global ranking method, the results show that the method can effectively improve the query.
【学位授予单位】:南开大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 那罡;;移动搜索的“简单”逻辑[J];中国计算机用户;2006年26期
2 刘兴波;;数据挖掘在搜索引擎中的应用[J];辽宁省交通高等专科学校学报;2008年03期
3 谢红侠;惠正运;;一种面向文档的XML的索引查询方法[J];微机发展;2005年12期
4 许洪超;袁培燕;;智能搜索引擎系统的建模分析[J];福建电脑;2009年08期
5 陆小丽;何加铭;;基于Map/Reduce的索引数据云存储模型研究[J];宁波大学学报(理工版);2011年03期
6 王路芳;张虎;;一种面向搜索引擎的基于集合模型的搜索算法[J];山西农业大学学报(自然科学版);2009年06期
7 卢秉亮;朱健;张磊;曹一鹏;;Internet搜索引擎索引数据库的设计与实现[J];微处理机;2006年03期
8 吴启明;;基于XML的搜索引擎[J];中国新技术新产品;2008年12期
9 张继刚;搜索引擎使用技巧[J];网络与信息;1999年09期
10 ;关键词搜索[J];每周电脑报;2000年38期
相关会议论文 前10条
1 彭轲;廖闻剑;;浅析搜索引擎[A];中国通信学会第五届学术年会论文集[C];2008年
2 李丹;;如何利用搜索引擎查找中医药信息[A];中国中医药信息研究会第二届理事大会暨学术交流会议论文汇编[C];2003年
3 邓长寿;郭景峰;杨焱林;邓安远;;下一代Web搜索引擎初探[A];第十八届全国数据库学术会议论文集(研究报告篇)[C];2001年
4 维尼拉·木沙江;吐尔洪·吾司曼;;维、哈、柯文搜索引擎中网页爬行器的设计与实现[A];少数民族青年自然语言处理技术研究与进展——第三届全国少数民族青年自然语言信息处理、第二届全国多语言知识库建设联合学术研讨会论文集[C];2010年
5 何璐;李晋宏;;基于XML的大容量搜索引擎技术探讨[A];2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(下)[C];2006年
6 汤薇;曾艳;;构建校园网搜索引擎必要性分析[A];广西计算机学会2008年年会论文集[C];2008年
7 张维华;王国仁;于戈;郑怀远;;面向对象数据库系统中索引的建立与维护[A];第十七届全国数据库学术会议论文集(研究报告篇)[C];2000年
8 姚树宇;赵少东;;一种使用分布式技术的搜索引擎[A];2005年全国开放式分布与并行计算学术会议论文集[C];2005年
9 倪俊峰;;基于黄页搜索引擎的关键字排名广告系统的设计与实现[A];2005年中国索引学会年会暨学术研讨会论文集[C];2005年
10 张怡;查贵庭;;SEO在信息服务中的应用研究[A];2010年中国索引学会年会暨学术研讨会论文集[C];2010年
相关重要报纸文章 前10条
1 章森 王伟;搜索引擎的工作机制[N];计算机世界;2006年
2 李一鑫;搜索排名的红与黑[N];财经时报;2007年
3 周文林;搜狗3.0能否撼动搜索市场[N];经济参考报;2007年
4 惠正一;比尔·盖茨:微软不怕Google[N];第一财经日报;2005年
5 赛迪顾问股份有限公司互联网与电子商务咨询中心 常燕杰;搜索,还是门户[N];中国计算机报;2005年
6 陈珊;浙江移动推出手机搜索引擎服务[N];人民邮电;2005年
7 赵法忠;搜索引擎还需悠着点[N];中国经营报;2005年
8 金朝力;搜索引擎火拼搜索质量[N];北京商报;2006年
9 本报记者 赵晓辉 孟昭丽;搜索引擎驶入“避风港”[N];中国证券报;2006年
10 孙t;搜索引擎惊喜侵权官司止于“避风港”?[N];第一财经日报;2006年
相关博士学位论文 前10条
1 张帆;搜索引擎中索引表求交和提前停止技术优化研究[D];南开大学;2012年
2 陈旭毅;基于索引云的企业搜索引擎实现研究[D];武汉大学;2011年
3 刘佐达;分布协作式搜索引擎模型及算法研究[D];清华大学;2011年
4 岑荣伟;基于用户行为分析的搜索引擎评价研究[D];清华大学;2010年
5 李群;主题搜索引擎聚类算法的研究[D];北京林业大学;2011年
6 苏君华;面向搜索引擎的技术接受模型研究[D];南京大学;2011年
7 郭眈;中文互联网视频搜索引擎系统策略研究[D];北京交通大学;2012年
8 王昤璞;基于用户体验的互联网搜索引擎医学信息检索可用性评估研究[D];吉林大学;2010年
9 李莎莎;面向搜索引擎的自然语言处理关键技术研究[D];国防科学技术大学;2011年
10 白玉琪;空间信息搜索引擎研究[D];中国科学院研究生院(遥感应用研究所);2003年
相关硕士学位论文 前10条
1 张蕾;基于Lucene的电子档案检索系统的设计与实现[D];西安电子科技大学;2010年
2 李浩;分布式教育网信息检索系统的研究和实现[D];华南理工大学;2010年
3 张朝斌;企业级搜索引擎的优化设计与实现[D];华南理工大学;2010年
4 尉建兴;基于Lucene搜索引擎的研究与应用[D];太原理工大学;2011年
5 张彬;基于lucene的搜索引擎[D];上海师范大学;2010年
6 徐财应;基于Lucene的搜索引擎技术的研究与改进[D];长春理工大学;2010年
7 陈艳斐;基于用户兴趣模型的校园网搜索引擎设计与应用[D];云南大学;2010年
8 刘志伟;数学搜索引擎研究[D];兰州大学;2011年
9 孙华昱;Lucene在医学影像资源检索平台中的应用[D];沈阳工业大学;2011年
10 薛云;Internet上元搜索引擎的研究与设计[D];太原理工大学;2003年
本文编号:2404556
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2404556.html