当前位置:主页 > 科技论文 > 搜索引擎论文 >

搜索引擎用户点击模型研究

发布时间:2019-05-22 17:48
【摘要】:搜索引擎已经成为互联网最主要的访问入口之一,用户时常通过搜索引擎来寻找想要获得的信息。对搜索引擎来说,能否返回高质量的查询结果对于用户体验至关重要,为此搜索引擎公司会广泛收集用户的交互数据(如用户查询了哪些词,点击了哪些结果)。基于这些用户的隐式反馈信息,点击模型(click model)被广泛用于从中挖掘查询结果对于查询词的相关性信息。点击模型对用户的浏览和点击行为进行建模并对查询结果的相关性进行估计。已有的点击模型考虑了位置偏置、用户满意度等影响用户点击的因素。在本工作中,我们认为存在其他一些还没有被已有点击模型充分考虑在内,但是会对用户点击产生影响的因素。如用户相关的因素,查询词相关的因素,时间相关的因素等。本文将重点研究用户行为偏好因素,用户搜索专家程度因素和查询词类型因素对用户点击的影响,并且建立将这些因素考虑在内的点击模型。 用户行为偏好因素:我们通过眼动实验对用户搜索时的检验行为进行分析,发现用户在检验深度上存在较大的差异,说明用户存在不同的检验偏好。此外,通过对真实搜索引擎用户点击日志的分析,我们发现用户在点击行为(点击位置,点击数量)上也体现出一定的差异,说明用户存在点击偏好。据此我们提出了一个考虑用户偏好的点击模型框架。在多个点击模型上的实验结果表明,在引入用户行为偏好因素后,模型的性能能够普遍得到显著的提升。 用户搜索专家程度因素:点击通常被认为是用户对查询结果是否相关的判断。我们认为不同用户在判断一个文档的相关性时,做出正确判断的概率存在差异。我们提出搜索专家程度的概念,并假设其决定了用户能否正确的判断文档的相关性,进而对点击行为产生影响。基于这个假设,我们构建了考虑用户搜索专家程度的点击模型,真实数据上的实验结果表明,新的模型能够更好的对文档的相关性进行估计。 查询词类型因素:我们通过眼动实验发现用户在不同类型查询词下的搜索行为存在很大差异,然而已有的点击模型并没有考虑查询词类型因素对用户点击的影响。在对用户的检验行为,,点击行为和搜索专家程度受查询词类型的影响进行研究之后,我们提出了考虑查询词类型因素的点击模型框架。这个框架能够通过无监督的方法从查询词的点击特征与用户点击数据中学习出查询词的类型信息,并且对不同的查询词类型分别进行建模,由此提升点击模型的性能。此外,我们的无监督框架所估计出的各项参数与眼动实验中得到的结果有较高的一致性,这也从另一个方面验证了我们方法的有效性。
[Abstract]:Search engine has become one of the most important access points to the Internet, users often use search engine to find the information they want. For search engines, whether or not to return high-quality query results is critical to the user experience, so search engine companies widely collect user interaction data (such as what words the user queries and what results are clicked). Based on the implicit feedback information of these users, the click model (click model) is widely used to mine the correlation information of query results to query words. The click model models the browsing and click behavior of users and estimates the correlation of query results. The existing click model takes into account the location bias, user satisfaction and other factors that affect the user click. In this work, we think that there are other factors that have not been fully taken into account by the existing click model, but will have an impact on user click. Such as user-related factors, query words related factors, time-related factors and so on. This paper will focus on the influence of user behavior preference factor, user search expert degree factor and query word type factor on user click, and establish a click model that takes these factors into account. The factors of user behavior preference: we analyze the inspection behavior of users when searching through eye movement experiment, and find that there are great differences in the depth of inspection, which indicates that users have different test preferences. In addition, through the analysis of the click log of the real search engine user, we find that the user also shows some differences in the click behavior (click position, the number of clicks), indicating that the user has the click preference. Based on this, we propose a click model framework that takes into account user preferences. The experimental results on multiple click models show that the performance of the model can be significantly improved by introducing the user behavior preference factor. User search expert level factor: click is usually considered to be the user's judgment on whether the query results are relevant. We think that there are differences in the probability of correct judgment when different users judge the correlation of a document. We propose the concept of search expert level, and assume that it determines whether the user can correctly judge the relevance of the document, and then has an impact on the click behavior. Based on this hypothesis, we construct a click model considering the degree of user search experts. The experimental results on real data show that the new model can better estimate the correlation of documents. Query word type factor: through eye movement experiment, we find that the search behavior of users under different types of query words is very different, but the existing click model does not consider the influence of query word type factor on user click. After studying the influence of query word type on user's checking behavior, click behavior and the degree of search expert, we propose a click model framework which takes into account the factors of query word type. This framework can learn the type information of query words from the click characteristics of query words and user click data without supervision, and model different query word types, thus improving the performance of click model. In addition, the parameters estimated by our unsupervised framework are in good agreement with the results obtained in the eye movement experiment, which also verifies the effectiveness of our method from another aspect.
【学位授予单位】:清华大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TP391.3

【共引文献】

相关期刊论文 前10条

1 付博;赵世奇;刘挺;;Web查询日志研究综述[J];电子学报;2013年09期

2 郭世龙;王晨升;杨光;刘丰;钟兴志;;基于随机游走模型的关键词推荐算法[J];产业与科技论坛;2013年22期

3 刘喜文;郑昌兴;王文龙;汤刚强;;构建数据仓库过程中的数据清洗研究[J];图书与情报;2013年05期

4 许明;吴建平;杜怡曼;谢峰;肖云鹏;;基于三部图的路网节点关键度排序方法[J];北京邮电大学学报;2014年S1期

5 张胜;;谱聚类在图像识别中的应用[J];安徽电子信息职业技术学院学报;2014年02期

6 张喜平;李永树;刘刚;王蕾;;节点重要度贡献的复杂网络节点重要度评估方法[J];复杂系统与复杂性科学;2014年03期

7 龚卫华;郭伟鹏;杨良怀;;信任网络中多维信任序列模式挖掘方法研究[J];电子与信息学报;2014年08期

8 张引;高克宁;张斌;;多种搜索行为联合分析方法研究[J];东北大学学报(自然科学版);2014年09期

9 王晓春;杨沐昀;李生;;个性化信息检索中的用户历史分析[J];智能计算机与应用;2014年05期

10 吴哲;郭宇春;陈常嘉;;基于用户关系的在线社会网络关键用户识别算法[J];北京交通大学学报;2014年05期

相关会议论文 前2条

1 许明;吴建平;杜怡曼;谢峰;肖云鹏;;基于三部图的路网节点关键度排序方法[A];2013年全国通信软件学术会议论文集[C];2013年

2 纪雪梅;王芳;;在线社交网络用户情感传播研究[A];2013中国信息经济学会学术年会暨博士生论坛论文集[C];2013年

相关博士学位论文 前10条

1 宋巍;基于主题的查询意图识别研究[D];哈尔滨工业大学;2013年

2 李朋;异构信息网络分析模型及其应用研究[D];重庆大学;2013年

3 刘东;基于内容的互联网社交图像标签处理与分析[D];哈尔滨工业大学;2012年

4 陈浩;Web搜索的用户兴趣与智能优化研究[D];中南大学;2012年

5 张勇实;基于链接相似性分析的WEB结构挖掘方法研究[D];哈尔滨工程大学;2012年

6 吴共庆;基于标签路径特征的Web新闻内容抽取研究[D];合肥工业大学;2012年

7 曾雪;在线社交网络用户的分类及采样研究[D];电子科技大学;2013年

8 孔维梁;协同过滤推荐系统关键问题研究[D];华中师范大学;2013年

9 张金松;基于引文上下文分析的文献检索技术研究[D];大连海事大学;2013年

10 龚家瑜;基于数据挖掘的药物靶标发现方法研究[D];华东理工大学;2013年

相关硕士学位论文 前10条

1 范敏;学术用户网络信息查寻中的认知失调及其调节机制研究[D];西南大学;2013年

2 黄政;青少年使用移动搜索行为的研究[D];上海交通大学;2013年

3 张涛;Web教学资源采集中超链接可采集度评价研究[D];南京师范大学;2013年

4 马桂香;评论文本的多方面观点挖掘研究[D];北京交通大学;2013年

5 刘文君;基于膜计算优化算法的语义主题爬虫研究[D];西华大学;2013年

6 舒昕;基于社会网络分析的Web社区发现[D];兰州交通大学;2013年

7 王良伟;面向垂直搜索引擎的主题爬虫方法研究[D];重庆大学;2013年

8 刘闽;基于知识迁移的网络舆论多维度识别系统的设计与实现[D];哈尔滨工业大学;2013年

9 张婷;基于用户行为分析的本地搜索排序算法优化[D];北京工业大学;2013年

10 王梅;随机游走图像分割算法的研究[D];北京工业大学;2013年



本文编号:2483118

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/2483118.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户07d91***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com