六轴工业机器人的轨迹优化研究
发布时间:2021-09-08 20:26
随着工业机器人广泛地应用于生产生活的各个领域,对轨迹规划提出了更高的要求。工作效率和能量消耗一直是工业机器人最为重要的性能指标。本文以150Kg级6轴重载机器人为研究对象,采用D-H法建立工业机器人的运动学模型,利用拉格朗日法来推导动力学方程。在SolidWorks中建立工业机器人的三维实体模型并获取相关运动学和动力学参数。以时间-能量为优化指标,基于智能优化算法研究工业机器人的最优轨迹规划。传统的多项式轨迹规划并没有考虑约束条件,因此本文基于智能优化算法研究了满足动力学约束的时间-能量最优轨迹规划方法。针对人工蜂群算法(Artificial Bee Colony Algorithm,ABC)收敛慢、精度低等问题,提出了 一种改进的人工蜂群算法(Improved ABC,IABC)。为改善ABC算法每次迭代都只在单个维度上进行搜索,效率较低的不足,本文采用效率更高的全维搜索。在雇佣蜂阶段,引入了基于精英解的引导项和基于任意解的干扰项,在提高精英解导向作用的同时维持了种群的多样性。在跟随蜂阶段采用复合搜索策略,让一部分粒子执行全维度的邻域搜索以保证算法的全局探索能力,另一部分则执行灰狼算...
【文章来源】:合肥工业大学安徽省 211工程院校 教育部直属院校
【文章页数】:80 页
【学位级别】:硕士
【部分图文】:
图2.2所研宄工业机器人实物图
?第3章机器人基本轨迹规划方法???3.2.1直线规划??对于直线规划,梯形速度曲线规划是最基本的、最常见的直线规划方法,以??梯形速度曲线为例分析其插补算法,图3.4为插补效果的示意图。用户设定起点??匕时刻的速度V0、位姿坐标尸oOcoj^zacto,仇y〇)和终点时刻以的速度V/、位姿坐标??尸/〇¥,_y/,z/,a/,你>y/),加速度、减速度以及最大速度竹。??始末点位姿?_??P??,Pf??0.8?卜?:??离散化?丨??0.6?.??插值点位姿序列?^?;??0.4、??逆运动学?a2'?丨??关节角序列??0.4?6??|?多项:^插值?????0?0??关节角与时间的??函数??图3.3笛卡尔空间轨迹规划流程图?图3.4直线插补示意图??Fig?3.3?The?flow?chart?of?trajectory?Fig?3.4?The?schematic?of?linear?interpolation??planning?in?cartesian?space??首先判断能否达到设定的最大速度。当没有匀速阶段时,速度最大,此时有:??v2?-V??V2f-vt??L=L+Ld=m?°+^ ̄-?(3.9)??Zaa?lad??式中Z?=?J(;c,?-?A)2?+?Cv,?-h)2?+?(z,?-?A)2为起点和终点的直线距离,La、Ld??分别为加速阶段和减速阶段的路程。由式(3.9)可以解得可以达到的最大速度为:??Jlaa.adX?-aa.vl?+?ad.vl??vm=^?1 ̄ ̄-——-?(3.10)??ad-aa??如果
?第3章机器人基本轨迹规划方法???P3??2??「?/?'??ly?'??1,5.?;??P0?,?I??N?1?<?(P2??/?卜、?*??°-5^?/?、VP2??/?,’??ok?pi?/??2>C^2??oo?x??图3.5圆弧插补示意图??Fig?3.5?The?schematic?of?Circular?interpolation??由三点到圆心的距离相等可建立方程组:? ̄??=?(x\? ̄x〇)2?+?(^1? ̄?Jo)2?+?(Z1? ̄?z〇)2??-r2?=?(x2?-?x0)2?+?(y2?-?Jo)2?+?(z2?-?z0)2?(3.16)??r2?=?(x3?-x0)2?+(>>3?-y〇)2?+(z3?-z〇)2??由方程组(3.16)可以消去未知量r,得到式(3.17)、(3.18):??2(x2?-xx)x?+?2{y2?-yx)y?+?2(z2?-zL)z?+?xL2?+?-x22-yl-z22?=?0??可记为:為x?+?52少?+?C2z?+?Z)2?=?0?(3.17)??2(x3?-?Xj)x?+?2(y3?-yjy?+?2(z3?-zx)z?+?x^++?Zj2?-?x32?-?yl?-z^?=?0??可记为:為jc?+?53_y?+?C3z?+?Z)3?=?0?(3.18)??由式(3.15)、(3.17)、(3.18)可得到线性方程组:??'A?Bi?Qlp〇l?lDi'??A?B2?C2?y〇?+?D2?(3-19)??_為?53?C3_?_z〇_?_Z)3_??由式(3.19)可以
【参考文献】:
期刊论文
[1]机场行李装载机器人的轨迹规划研究[J]. 洪振宇,赵冲,张志旭,张聪,彭松伟. 机械设计. 2020(03)
[2]UR10机器人的运动学分析与轨迹规划[J]. 刘强,杨道国,郝卫东. 机床与液压. 2019(17)
[3]加加速度连续有界的PTP运动轨迹规划研究[J]. 林建雄,白瑞林,王延玉. 机械科学与技术. 2019(08)
[4]基于多目标粒子群优化算法的6R工业机器人轨迹优化[J]. 李丽,房立金,王国勋. 机械传动. 2018(08)
[5]一种改进粒子群的工业机器人时间最优轨迹规划算法[J]. 王玉宝,王诗宇,李备备,郭放达. 小型微型计算机系统. 2018(08)
[6]工业机器人时间-能量-脉动最优轨迹规划[J]. 施祥玲,方红根. 机械设计与制造. 2018(04)
[7]关节型工业机器人轨迹规划研究综述[J]. 李黎,尚俊云,冯艳丽,淮亚文. 计算机工程与应用. 2018(05)
[8]基于Leap Motion和S曲线的飞行机器人机械臂控制研究[J]. 包军,仓宇,邓经枢,童明波. 计算机应用研究. 2018(11)
[9]基于Jerk最优的机器人轨迹规划[J]. 王文杰,秦现生,王鸿博,牛军龙,谭小群,张雪峰. 机械传动. 2017(07)
[10]空气阻力对工业机器人时间最优轨迹规划的影响[J]. 康代轲,陈明. 流体传动与控制. 2017(03)
博士论文
[1]机器人轨迹规划算法及其在虚拟环境下的投射式实现研究[D]. 罗熊.中南大学 2004
硕士论文
[1]基于CODESYS的六关节机器人运动控制方法研究[D]. 仲晓帆.浙江工业大学 2015
本文编号:3391432
【文章来源】:合肥工业大学安徽省 211工程院校 教育部直属院校
【文章页数】:80 页
【学位级别】:硕士
【部分图文】:
图2.2所研宄工业机器人实物图
?第3章机器人基本轨迹规划方法???3.2.1直线规划??对于直线规划,梯形速度曲线规划是最基本的、最常见的直线规划方法,以??梯形速度曲线为例分析其插补算法,图3.4为插补效果的示意图。用户设定起点??匕时刻的速度V0、位姿坐标尸oOcoj^zacto,仇y〇)和终点时刻以的速度V/、位姿坐标??尸/〇¥,_y/,z/,a/,你>y/),加速度、减速度以及最大速度竹。??始末点位姿?_??P??,Pf??0.8?卜?:??离散化?丨??0.6?.??插值点位姿序列?^?;??0.4、??逆运动学?a2'?丨??关节角序列??0.4?6??|?多项:^插值?????0?0??关节角与时间的??函数??图3.3笛卡尔空间轨迹规划流程图?图3.4直线插补示意图??Fig?3.3?The?flow?chart?of?trajectory?Fig?3.4?The?schematic?of?linear?interpolation??planning?in?cartesian?space??首先判断能否达到设定的最大速度。当没有匀速阶段时,速度最大,此时有:??v2?-V??V2f-vt??L=L+Ld=m?°+^ ̄-?(3.9)??Zaa?lad??式中Z?=?J(;c,?-?A)2?+?Cv,?-h)2?+?(z,?-?A)2为起点和终点的直线距离,La、Ld??分别为加速阶段和减速阶段的路程。由式(3.9)可以解得可以达到的最大速度为:??Jlaa.adX?-aa.vl?+?ad.vl??vm=^?1 ̄ ̄-——-?(3.10)??ad-aa??如果
?第3章机器人基本轨迹规划方法???P3??2??「?/?'??ly?'??1,5.?;??P0?,?I??N?1?<?(P2??/?卜、?*??°-5^?/?、VP2??/?,’??ok?pi?/??2>C^2??oo?x??图3.5圆弧插补示意图??Fig?3.5?The?schematic?of?Circular?interpolation??由三点到圆心的距离相等可建立方程组:? ̄??=?(x\? ̄x〇)2?+?(^1? ̄?Jo)2?+?(Z1? ̄?z〇)2??-r2?=?(x2?-?x0)2?+?(y2?-?Jo)2?+?(z2?-?z0)2?(3.16)??r2?=?(x3?-x0)2?+(>>3?-y〇)2?+(z3?-z〇)2??由方程组(3.16)可以消去未知量r,得到式(3.17)、(3.18):??2(x2?-xx)x?+?2{y2?-yx)y?+?2(z2?-zL)z?+?xL2?+?-x22-yl-z22?=?0??可记为:為x?+?52少?+?C2z?+?Z)2?=?0?(3.17)??2(x3?-?Xj)x?+?2(y3?-yjy?+?2(z3?-zx)z?+?x^++?Zj2?-?x32?-?yl?-z^?=?0??可记为:為jc?+?53_y?+?C3z?+?Z)3?=?0?(3.18)??由式(3.15)、(3.17)、(3.18)可得到线性方程组:??'A?Bi?Qlp〇l?lDi'??A?B2?C2?y〇?+?D2?(3-19)??_為?53?C3_?_z〇_?_Z)3_??由式(3.19)可以
【参考文献】:
期刊论文
[1]机场行李装载机器人的轨迹规划研究[J]. 洪振宇,赵冲,张志旭,张聪,彭松伟. 机械设计. 2020(03)
[2]UR10机器人的运动学分析与轨迹规划[J]. 刘强,杨道国,郝卫东. 机床与液压. 2019(17)
[3]加加速度连续有界的PTP运动轨迹规划研究[J]. 林建雄,白瑞林,王延玉. 机械科学与技术. 2019(08)
[4]基于多目标粒子群优化算法的6R工业机器人轨迹优化[J]. 李丽,房立金,王国勋. 机械传动. 2018(08)
[5]一种改进粒子群的工业机器人时间最优轨迹规划算法[J]. 王玉宝,王诗宇,李备备,郭放达. 小型微型计算机系统. 2018(08)
[6]工业机器人时间-能量-脉动最优轨迹规划[J]. 施祥玲,方红根. 机械设计与制造. 2018(04)
[7]关节型工业机器人轨迹规划研究综述[J]. 李黎,尚俊云,冯艳丽,淮亚文. 计算机工程与应用. 2018(05)
[8]基于Leap Motion和S曲线的飞行机器人机械臂控制研究[J]. 包军,仓宇,邓经枢,童明波. 计算机应用研究. 2018(11)
[9]基于Jerk最优的机器人轨迹规划[J]. 王文杰,秦现生,王鸿博,牛军龙,谭小群,张雪峰. 机械传动. 2017(07)
[10]空气阻力对工业机器人时间最优轨迹规划的影响[J]. 康代轲,陈明. 流体传动与控制. 2017(03)
博士论文
[1]机器人轨迹规划算法及其在虚拟环境下的投射式实现研究[D]. 罗熊.中南大学 2004
硕士论文
[1]基于CODESYS的六关节机器人运动控制方法研究[D]. 仲晓帆.浙江工业大学 2015
本文编号:3391432
本文链接:https://www.wllwen.com/kejilunwen/sousuoyinqinglunwen/3391432.html